码迷,mamicode.com
首页 > 其他好文 > 详细

第二十四周项目2-回溯法走迷宫

时间:2015-02-20 14:08:54      阅读:259      评论:0      收藏:0      [点我收藏+]

标签:

问题:
迷宫问题中,在寻找路径时,采用的方法通常是:从入口出发,沿某一方向向前试探,若能走通,则继续向前进;如果走不通,则要沿原路返回,换一个方向再继续试探,直到所有可能的能跟都试探完成为止。为了保证在任何位置上都能沿原路返回(回溯),要建立一个后进先出的栈来保存从入口到当前位置的路径。
而且在求解迷宫路径中,所求得的路径必须是简单路径。即在求得的路径上不能有重复的同一块通道。
为了表示迷宫,设置一个数组,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,数组如下所示:

int mg[10][10] = {      //定义一个迷宫,0表示通道,1表示墙
	{1,1,1,1,1,1,1,1,1,1},
	{1,0,0,1,1,0,0,1,0,1},
	{1,0,0,1,0,0,0,1,0,1},
	{1,0,0,0,0,1,1,0,0,1},
	{1,0,1,1,1,0,0,0,0,1},
	{1,0,0,0,1,0,0,0,0,1},
	{1,0,1,0,0,0,1,0,0,1},
	{1,0,1,1,1,0,1,1,0,1},
	{1,1,0,0,0,0,0,0,0,1},
	{1,1,1,1,1,1,1,1,1,1}};
对于迷宫中每个方块,都有上下左右四个方块相邻,第i行第j列的当前方块的位置为(i,j),规定上方方块为方位0,按顺时针方向递增编号。假设从方位0到方位3的方向查找下一个可走方块。
      为便于回溯,对于可走的方块都要进栈,并试探它的下一个可走方位,将这个可走的方位保存到栈中,栈定义如下:

struct St                //定义一个栈,保存路径
{
	int i;               //当前方块的行号
	int j;               //当前广场的列号
	int di;              //di是下一可走方位的方位号
} St[MaxSize];           //定义栈

求解路径过程为:先将入口进栈(初始方位设置为-1),在栈不为空时循环:取栈顶方块(不退栈),若是出口,则输出栈中方块即为路径。否则,找下一个可走的相邻方块,若不存在这样的方块,则退栈。若存在,即将其方位保存到栈顶元素中,并将这个可走相邻方块进栈(初始方位设置为-1)。
为保证试探可走相邻方块不是已走路径上的方块,如(i,j)已经进栈,在试探(i+1,j)的下一可走方块时,又试探到(i,j),这样会引起死循环,为此,在一个方块进栈后,将对应的mg数组元素值改为-1(变为不可走),当退栈时(没有可走的相邻方块),将其恢复为0.

源码:

<span style="font-size:14px;">#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define MaxSize 100
int maze[10][10] =   //定义一个迷宫,0表示通道,1表示墙
{
    {1,1,1,1,1,1,1,1,1,1},
    {1,0,0,1,1,0,0,1,0,1},
    {1,0,0,1,0,0,0,1,0,1},
    {1,0,0,0,0,1,1,0,0,1},
    {1,0,1,1,1,0,0,0,0,1},
    {1,0,0,0,1,0,0,0,0,1},
    {1,0,1,0,0,0,1,0,0,1},
    {1,0,1,1,1,0,1,1,0,1},
    {1,1,0,0,0,0,0,0,0,1},
    {1,1,1,1,1,1,1,1,1,1}
};

struct Try //定义一个栈,保存路径
{
    int i;               //当前方块的行号
    int j;               //当前广场的列号
    int d;              //di是下一可走方位的方位号
} path[MaxSize];         //定义栈

int top = -1;            //初始化栈指针

void findPath(int xb, int yb, int xe, int ye)            //路径为从(xb,yb)到(xe,ye)
{
    int i, j, d, find, k;
    top++;                                             //初始方块进栈
    path[top].i = xb;
    path[top].j = yb;
    path[top].d = -1;
    maze[xb][yb] = -1;
    while(top>-1)                                      //栈不为空时循环
    {
        i = path[top].i;
        j = path[top].j;
        d = path[top].d;
        if(i==xe && j==ye)                             //找到了出口,输出路径
        {
            cout << "迷宫路径如下:\n";
            for(k=0; k<=top; k++)
            {
                cout << "\t(" << path[k].i << "," << path[k].j << ")";
                if((k+1)%5==0) cout << endl;            //每输出五个方块后换一行
            }
            cout << endl;
            return;
        }
        find = 0;
        while(d<4 && find==0)                          //找下一个可走的点
        {
            d++;
            switch(d)
            {
            case 0:  //向上
                i = path[top].i-1;
                j = path[top].j;
                break;
            case 1: //向右
                i = path[top].i;
                j = path[top].j+1;
                break;
            case 2:  //向下
                i = path[top].i+1;
                j = path[top].j;
                break;
            case 3:  //向左
                i = path[top].i;
                j = path[top].j-1;
                break;
            }
            if(maze[i][j]==0) find = 1;                      //找到通路
        }
        if(find==1)                                        //找到了下一个可走方块
        {
            path[top].d = d;                               //修改原栈顶元素的d值
            top++;                                         //下一个可走方块进栈
            path[top].i = i;
            path[top].j = j;
            path[top].d = -1;
            maze[i][j] = -1;                                 //避免重复走到这个方块
            //cout << "\t(" << path[top].i << "," << path[top].j << ")"; //显示经过的试探
        }
        else  //没有路可走,则退栈
        {
            maze[path[top].i][path[top].j] = 0;                  //让该位置变成其它路径可走方块
            top--;
        }
    }
    cout << "没有可走路径!\n";
}

int main()
{
    findPath(1,1,8,8);  //从(1,1)入,(8,8)出
    return 0;
}</span>
运行结果:

技术分享


@ Mayuko

第二十四周项目2-回溯法走迷宫

标签:

原文地址:http://blog.csdn.net/mayuko2012/article/details/43888559

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!