码迷,mamicode.com
首页 > 其他好文 > 详细

HDOJ-1003 Max Sum(最大连续子段 动态规划)

时间:2015-02-20 18:38:19      阅读:361      评论:0      收藏:0      [点我收藏+]

标签:

http://acm.hdu.edu.cn/showproblem.php?pid=1003

给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=1000

求最大连续子段和及其起始位置和终止位置,很基础的动态规划(DP)问题,看完DP第一次做的DP题目

DP真的是一种很优美的算法,或者说思想,但是比较难理解,我对DP的理解还很浅薄

# include <stdio.h>
# define INF 1000000000

int main()
{
	int Start, End, Sum, Max, Num, Flag, t, n;

	scanf("%d",&t);
	for(int Count = 0; Count < t; Count++)
	{
		if(Count)	printf("\n");

		scanf("%d",&n);

		//初始化
		Start = Flag = 1;//Start/End:已记录的最大连续子段得起/终点; Flag:当前子段起点
		End = n;
		Sum = 0;//Sum:当前子段和
		Max = -INF;//Max:已记录的最大连续子段和

		for(int i = 1; i <= n; i++)
		{
			scanf("%d",&Num);
			Sum += Num;

			//Sum大于Max 更新当前最大连续子段信息
			if(Sum >= Max)
			{
				Max = Sum;
				Start = Flag;
				End = i;
			}
			//*  Sum小于0 Sum置0 当前子段起点标志为下一个
			//因为这一步的存在 每次循环结束 Sum总是>=0
			//所以Sum + Num后小于0 说明Num是负数并且其绝对值比Sum大 若把该Num纳入子段 则会导致子段不是最优
			if(Sum < 0)
			{
				Sum = 0;
				Flag = i + 1;
			}
		}

		printf("Case %d:\n", Count + 1);
		printf("%d %d %d\n", Max, Start, End);
	}

	return 0;
}

  

HDOJ-1003 Max Sum(最大连续子段 动态规划)

标签:

原文地址:http://www.cnblogs.com/linjiaman/p/4296620.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!