码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj 1835 基站选址(线段树优化Dp)

时间:2015-02-20 20:53:00      阅读:315      评论:0      收藏:0      [点我收藏+]

标签:bzoj题解   线段树   dp   

Description


N线i(i>1)1Di

KiCi

iSi

iWi

使

Solution


dp,dp[i][j]ijji

dp[i][j]=min(dp[k][j?1]+cost[k][i])+c[i]

cost[k][i]

dp[i]=min(dp[k]+cost[k][i])+c[i]

n3T

idp

dp[i],dp[i+1]cost

i

st[i]ed[i]ii

ed[x]=ii+1x便

线min(dp[k]+cost[k][i])dp[i]dp[i+1]

ed[x]=ix,线[1,st[x]?1]w[x]()

线O(knlogn)

code

#include <bits/stdc++.h>
using namespace std;
#define ls (rt << 1)
#define rs (rt << 1 | 1)
const int N = 20005, inf = ~0u >> 1;
int ans, n, m, d[N], c[N], s[N], w[N], st[N], ed[N], f[N];
int lazy[N << 2], v[N << 2];
vector<int> g[N];
inline int read(int &t) {
    char c;
    while (c = getchar(), c < ‘0‘ || c > ‘9‘);
    t = c - ‘0‘;
    while (c = getchar(), c >= ‘0‘ && c <= ‘9‘) t = t * 10 + c - ‘0‘;
    return t;
}
void pushdown(int rt) {
    if (lazy[rt]) {
        lazy[ls] += lazy[rt], lazy[rs] += lazy[rt];
        v[ls] += lazy[rt], v[rs] += lazy[rt];
        lazy[rt] = 0;
    }
}
inline void pushup(int rt) {
    v[rt] = min(v[ls], v[rs]);
}
void build(int rt, int l, int r) {
    lazy[rt] = 0;
    if (l == r) {
        v[rt] = f[l];
        return;
    }
    int mid = l + r >> 1;
    build(ls, l, mid), build(rs, mid + 1, r);
    pushup(rt);
}
void change(int rt, int l, int r, int L, int R, int x) {
    if (L > R)  return;
    if (L <= l && R >= r) {
        lazy[rt] += x;
        v[rt] += x;
        return;
    }
    pushdown(rt);
    int mid = l + r >> 1;
    if (L <= mid)   change(ls, l, mid, L, R, x);
    if (R > mid)    change(rs, mid + 1, r, L, R, x);
    pushup(rt);
}
int ask(int rt, int l, int r, int L, int R) {
    if (L > R)  return 0;
    if (L <= l && R >= r)   return v[rt];
    int mid = l + r >> 1;
    pushdown(rt);
    int t = inf;
    if (L <= mid)   t = min(t, ask(ls, l, mid, L, R));
    if (R > mid)    t = min(t, ask(rs, mid + 1, r, L, R));
    return t;
}
void init() {
    read(n), read(m);
    for (int i = 2; i <= n; ++i)    read(d[i]);
    for (int i = 1; i <= n; ++i)    read(c[i]);
    for (int i = 1; i <= n; ++i)    read(s[i]);
    for (int i = 1; i <= n; ++i)    read(w[i]);
    d[++n] = inf, w[n] = inf, ++m;
    for (int i = 1; i <= n; ++i) {
        st[i] = lower_bound(d + 1, d + n + 1, d[i] - s[i]) - d;
        ed[i] = lower_bound(d + 1, d + n + 1, d[i] + s[i]) - d;
        if (d[ed[i]] > d[i] + s[i]) --ed[i];
        g[ed[i]].push_back(i);
    }
}
void gao() {
    ans = inf;
    for (int i = 1; i <= m; ++i) {
        if (i == 1) {
            int t = 0;
            for (int j = 1; j <= n; ++j) {
                f[j] = t + c[j];
                for (int k = 0; k < g[j].size(); ++k) {
                    int x = g[j][k];
                    t += w[x];
                }
            }
            ans = f[n];
            continue;
        }
        build(1, 1, n);
        for (int j = 1; j <= n; ++j) {
            f[j] = ask(1, 1, n, 1, j - 1) + c[j];
            for (int k = 0; k < g[j].size(); ++k) {
                int x = g[j][k];
                change(1, 1, n, 1, st[x] - 1, w[x]);
            }
        }
        ans = min(ans, f[n]);
    }
}
int main() {
    init();
    gao();
    printf("%d\n", ans);
    return 0;
}

bzoj 1835 基站选址(线段树优化Dp)

标签:bzoj题解   线段树   dp   

原文地址:http://blog.csdn.net/mlzmlz95/article/details/43890273

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!