码迷,mamicode.com
首页 > 其他好文 > 详细

[CODEVS 3147] 矩阵乘法 2

时间:2015-02-21 12:02:08      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:矩阵乘法   前缀和   

描述

给出两个n*n的矩阵,m次询问它们的积中给定子矩阵的数值和。
http://codevs.cn/problem/3147/


分析

直接 n3 的矩阵乘法肯定超时, 要采用前缀和优化

row[s1] … row[t1]
col[s2] … col[t2]

(s1, s2) – (t1, t2)

row[x] * col[y] 表示用第 x 行的所有元素去乘第 y 行的所有元素.

==>

= row[s1] * col[s2] + row[s1] * col[s2+1] + … + row[s1] * col[t2] + row[s1+1] * col[s2] + … + row[s1+1] * col[t2] + … + row[t1] * col[t2]
// 分配律, 其实并没有看上去那么显然

= row[s1] * (col[s2] + col[s2+1] + … + col[t2]) + row[s1+1] * (col[s2] + col[s2+1] + … + col[t2]) + … + row[t1] * (col[s2] + col[s2+1] + … + col[t2])

= (row[s1] + row[s1+1] + … + row[t1]) * (col[s2] + col[s2+1] + … + col[t2])

==> 用前缀和处理
注意: row 其实相当于一个 1 行 n 列的矩阵, 而 col 相当于一个 n 行 1 列的矩阵. 上式中 row[s1] + … + row[t1] 表示把 t1-s1+1 个这样的矩阵每个元素对应的加起来 (用前缀和优化) 得到一个新的 n 行 1 列的矩阵; col[s2] + … + col[t2] 采用同样方法得到一个新的 1 行 n 列的矩阵. 两个新矩阵再相乘就得到一个只有一个元素的矩阵了, 该元素就是最终答案.


代码

11809ms 49MB

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 2000 + 10;
typedef int Matrix[maxn][maxn];
typedef long long LL;

Matrix A, B;

int main() {
    int n, m;
    scanf("%d %d", &n, &m); 

    for(int x = 1; x <= n; x++)
        for(int y = 1; y <= n; y++) {
            scanf("%d", &A[x][y]);
            A[x][y] += A[x-1][y];
        } // 前 x 行元素和

    for(int x = 1; x <= n; x++)
        for(int y = 1; y <= n; y++) {
            scanf("%d", &B[x][y]);
            B[x][y] += B[x][y-1];
        } // 前 y 列元素和

    for(int i = 0; i < m; i++) {
        int x1, y1, x2, y2;
        scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
        if(x1 > x2) swap(x1, x2);
        if(y1 > y2) swap(y1, y2);

        LL ans = 0;
        for(int i = 1; i <= n; i++)
            ans += (LL)(A[x2][i] - A[x1-1][i]) * (B[i][y2] - B[i][y1-1]);
        printf("%lld\n", ans);
    }
    return 0;
}

主页

http://blog.csdn.net/qq_21110267

[CODEVS 3147] 矩阵乘法 2

标签:矩阵乘法   前缀和   

原文地址:http://blog.csdn.net/qq_21110267/article/details/43898097

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!