码迷,mamicode.com
首页 > 其他好文 > 详细

ThreadPoolExecutor机制探索-我们到底能走多远系列(41)

时间:2015-02-21 22:16:11      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:

我们到底能走多远系列(41)

扯淡:

  这一年过的不匆忙,也颇多感受,成长的路上难免弯路,这个世界上没人关心你有没有变强,只有自己时刻提醒自己,不要忘记最初出发的原因。

  其实这个世界上比我们聪明的人无数,很多人都比我们努力,当我门奇怪为什么他们可以如此轻松的时候,是不会问他们付出过什么。怨天尤人是无用的,使自己变好,哪怕是变好一点点,我觉得生活着就是有意义的。

  未来,太远。唯有不停的积累,不要着急,抓得住的才能叫机会。

  羊年,一定要不做被动的人。大家加油!

目录留白:

 

主题:

直接进ThreadPoolExecutor源码看一看:(版本是1.7.0)
首先,这个线程池的状态是怎么样的呢?
我们看下面的字段定义,ctl作为ThreadPoolExecutor的核心状态控制字段,包含来两个信息:
     1,工作线程总数  workerCount
     2,线程池状态 RUNNING SHUTDOWN STOP TIDYING TERMINATED
下面代码解释一下:
     COUNT_BITS 是32减去3 就是29,下面的线程池状态就是-1 到 3 分别向左移动29位。
     如此,int的右侧29位,代表着线程数量,总数可以达到2的29次,29位后的3位代表线程池的状态
这样,线程池增加一个线程,只需吧ctl加1即可,而我们也发现实际这个线程池的最高线程数量是2的29次减1。并不是先前我们现象的2的32次减1。这个作者在注释中也提到了,说如果后续需要增大这个值, 可以吧ctl定义成AtomicLong。
 
这个关键的控制字段的理解,对阅读源码很有帮助。
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY  = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;// 111 00000000000000000000000000000
    private static final int SHUTDOWN  =  0 << COUNT_BITS;// 000 00000000000000000000000000000
    private static final int STOP      =  1 << COUNT_BITS;// 001 00000000000000000000000000000
    private static final int TIDYING    =  2 << COUNT_BITS;// 010 00000000000000000000000000000
    private static final int TERMINATED =  3 << COUNT_BITS;// 100 00000000000000000000000000000

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }//最高3位
    private static int workerCountOf(int c)  { return c & CAPACITY; }//后29位
    private static int ctlOf(int rs, int wc) { return rs | wc; }

代码里我们可能会这样使用ThreadPoolExecutor的方法

 

Future<?> future = this.threadPoolExecutor.submit(runnable);

 

那么就从submit方法入手,这个submit的代码在 AbstractExecutorService,因为 ThreadPoolExecutor继承了它。

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
把task包装成RunnableFuture,然后执行execute,下面是ThreadPoolExecutor的execute方法:
这个方法就是我们把任务提交给线程池去完成,至于线程池按照怎样的一个管理机制来完成这个task我们不关心,task关系的是run方法中的逻辑。
如此,对于开发来说是极其方便的,配置一个线程池,只需一句代码,然后专心完成task的逻辑。
那么,了解这个线程池的机制,我感觉只需要看下这个execute方法大概也明白了。特别是方法中的注释。
     1,当一个task被安排进来的时候,再确定不是空值后,直接判断在池中已经有工作的线程是否小于corePoolSize,小于则增加一个线程来负责这个task。
     2,如果池中已经工作的线程大于等于corePoolSize,就向队列里存task,而不是继续增加线程。
     3,当workQueue.offer失败时,也就是说task不能再向队列里放的时候,而此时工作线程大于等于corePoolSize,那么新进的task,就要新开一个线程来接待了。
根据代码分析诸多判断和逻辑,而对于使用这个线程池的外部来说,机制是这样:
     a、如果正在运行的线程数 < corePoolSize,那就马上创建线程并运行这个任务,而不会进行排队。
     b、如果正在运行的线程数 >= corePoolSize,那就把这个任务放入队列。
     c、如果队列满了,并且正在运行的线程数 < maximumPoolSize,那么还是要创建线程并运行这个任务。
     d、如果队列满了,并且正在运行的线程数 >= maximumPoolSize,那么线程池就会调用handler里方法。(采用LinkedBlockingDeque就不会出现队列满情况)
/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn‘t, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }
单从execute方法,大概能了解整个线程池的工作机制。
那么,全局的观看以下,我们一定明白这个ThreadPoolExecutor维护着一个池:
    /**
     * Set containing all worker threads in pool. Accessed only when
     * holding mainLock.
     */
    private final HashSet<Worker> workers = new HashSet<Worker>();
猜测execute方法中的addWorker应该是向这个set中add一个worker,而这里面的worker里有一个线程,这个线程执行完成时,就会从这个set中remove掉。
看一下开进程开始工作的addWorker方法:
技术分享
  /*
     * Methods for creating, running and cleaning up after workers
     */
    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread#start), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            final ReentrantLock mainLock = this.mainLock;
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int c = ctl.get();
                    int rs = runStateOf(c);

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
View Code

方法前面的retry循环,最终break的时候,执行compareAndIncrementWorkerCount(c),是的,最前面提到的ctl加1啦!这里利用CAS原则,可以参考先前的文章:摸我

    /**
     * Attempt to CAS-increment the workerCount field of ctl.
     */
    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }
retry循环break之后,就是做核心的事,new一个worker出来然后add进set,然后启动worker里的thread。  
我们注意到做把worker放入set这个操作前,先获取了锁,这个mainLock是类静态成员变量,是一个公用的可重入锁:
    /**
     * Lock held on access to workers set and related bookkeeping.
     * While we could use a concurrent set of some sort, it turns out
     * to be generally preferable to use a lock. Among the reasons is
     * that this serializes interruptIdleWorkers, which avoids
     * unnecessary interrupt storms, especially during shutdown.
     * Otherwise exiting threads would concurrently interrupt those
     * that have not yet interrupted. It also simplifies some of the
     * associated statistics bookkeeping of largestPoolSize etc. We
     * also hold mainLock on shutdown and shutdownNow, for the sake of
     * ensuring workers set is stable while separately checking
     * permission to interrupt and actually interrupting.
     */
    private final ReentrantLock mainLock = new ReentrantLock();

 

其实调用这个 addWorker方法有4种传参的方式:
  1, addWorker(command, true);
  2, addWorker(command, false);
  3, addWorker(null, false);
  4, addWorker(null, true);
在execute方法中就使用了前3种,结合这个核心方法我们先进行一下分析。
     第一个:线程数小于corePoolSize时,放一个需要处理的task进worker set。如果worker set长度超过corePoolSize,就返回false。
   第二个:当队列被放满时,就尝试将这个新来的task直接放入worker set,而此时worker set 的长度限制是maximumPoolSize。如果线程池也满了的话就返回false。
   第三个:放入一个空的task进set,比较的的长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会判断出后去任务队列里拿任务,这样就相当于世创建了一个新的线程,只是没有马上分配任务。
     第四个:这个方法就是放一个null的task进set,而且是在小于corePoolSize时。实际使用中是在 prestartCoreThread() 方法。这个方法用来为线程池先启动一个worker等待在那边,如果此时set中的数量已经达到corePoolSize那就返回false,什么也不干。还有是 prestartAllCoreThreads() 方法,准备corePoolSize个worker:
   /**
     * Starts all core threads, causing them to idly wait for work. This
     * overrides the default policy of starting core threads only when
     * new tasks are executed.
     *
     * @return the number of threads started
     */
    public int prestartAllCoreThreads() {
        int n = 0;
        while (addWorker(null, true))
            ++n;
        return n;
    }
在addWorker中 t.start() 使线程就绪,thread是怎么来的,就看下Worker的代码
Worker类的源码:
技术分享
/**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;
        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;
        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.
        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }
View Code
线程启动后就会调用run方法,也就是调用runWorker(Worker w),核心代码了,英文注释十分详细。
在执行task之前会先执行beforeExecute,task结束后执行afterExecute,pool的扩展性利用:摸我
技术分享
/**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don‘t need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and
     * clearInterruptsForTaskRun called to ensure that unless pool is
     * stopping, this thread does not have its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to
     * afterExecute. We separately handle RuntimeException, Error
     * (both of which the specs guarantee that we trap) and arbitrary
     * Throwables.  Because we cannot rethrow Throwables within
     * Runnable.run, we wrap them within Errors on the way out (to the
     * thread‘s UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread‘s UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
View Code

while循环条件:先取worker自己的task,如果没有,就是上面提到addWorker时task放null的那种,就调用getTask方法。

 /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            boolean timed;      // Are workers subject to culling?

            for (;;) {
                int wc = workerCountOf(c);
                timed = allowCoreThreadTimeOut || wc > corePoolSize;//如果线程池允许线程  timeout或者当前线程数大于核心线程数,则会进行timeout的处理

                if (wc <= maximumPoolSize && ! (timedOut && timed))//如果线程小于最大值,也不需要timeout判断的,就直接退出
                    break;
                if (compareAndDecrementWorkerCount(c))//削减线程
                    return null;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)//状态再判断是否变化,发生变化需要重新再来
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }

            try {
               //keepAliveTime来控制获取queue中元素时的等待时间
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

 

至此基本了解了ThreadPoolExecutor源码。在使用是也会更明了一些。

 

 

让我们继续前行

----------------------------------------------------------------------

努力不一定成功,但不努力肯定不会成功。

ThreadPoolExecutor机制探索-我们到底能走多远系列(41)

标签:

原文地址:http://www.cnblogs.com/killbug/p/4287166.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!