标签:dp
Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string “13” and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13 100 200 1000
Sample Output
1 1 2 2
Author
wqb0039
Source
2010 Asia Regional Chengdu Site —— Online Contest
求包含13且是13的倍数的个数
状态很好设计
dp[i][rest][k][e] 表示i位数,最高为为e,模13为k,是否包含13
然后套上漂亮的数位dp板子
算是熟悉一下这个写法了
/*************************************************************************
> File Name: hdu3652.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年02月22日 星期日 14时09分09秒
************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
int dp[11][14][2][11];
int bit[12];
int dfs (int cur, int rest, bool t, int e, bool flag)
{
if (cur == -1)
{
return t && (!rest);
}
if (~dp[cur][rest][t][e] && !flag)
{
return dp[cur][rest][t][e];
}
int end = flag ? bit[cur] : 9;
int ans = 0;
for (int i = 0; i <= end; ++i)
{
ans += dfs (cur - 1, (rest * 10 + i) % 13, t || (e == 1 && i == 3), i, flag && (i == end));
}
if (!flag)
{
dp[cur][rest][t][e] = ans;
}
return ans;
}
int calc (int n)
{
int cnt = 0;
while (n)
{
bit[cnt++] = n % 10;
n /= 10;
}
return dfs (cnt - 1, 0, 0, 0, 1);
}
int main ()
{
int n;
memset (dp, -1, sizeof(dp));
while (~scanf("%d", &n))
{
printf("%d\n", calc (n));
}
return 0;
}
标签:dp
原文地址:http://blog.csdn.net/guard_mine/article/details/43907575