码迷,mamicode.com
首页 > 其他好文 > 详细

BZOJ 2751 容易题

时间:2015-02-23 09:38:53      阅读:187      评论:0      收藏:0      [点我收藏+]

标签:

Description


为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input


第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18

HINT

 

数据范围

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m

 

Source

 这个其实真的蛮容易的。公式 $ans=\prod _ {i = 1}^{i = m} \sum _{j=1}^{j=n}j(j可以填在i位置)$ 。因为限制只有k组,最多100000,所以没有限制的居多,可以快速幂。有限制的暴力一下就可以了。

 

技术分享
 1 #include<algorithm>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 using namespace std;
 5 
 6 typedef long long ll;
 7 #define rhl (1000000007)
 8 #define maxn (100010)
 9 int n,m,k; pair <int,int> no[maxn]; ll res[maxn];
10 
11 inline int qsm(ll a,int b)
12 {
13     ll ret = 1;
14     for (;b;b >>= 1,(a *= a)%=rhl) if (b & 1) (ret *= a)%=rhl;
15     return ret;
16 }
17 
18 int main()
19 {
20     freopen("2751.in","r",stdin);
21     freopen("2751.out","w",stdout);
22     scanf("%d %d %d",&n,&m,&k);
23     for (int i = 1;i <= k;++i)
24     {
25         int x,y; scanf("%d %d",&x,&y);
26         no[i] = make_pair(x,y);
27     }
28     sort(no+1,no+k+1); k = unique(no+1,no+k+1)-no-1;
29     int tot = 0,last = 0;
30     for (int i = 1;i <= k;++i)
31     {
32         if (no[i].first == last) (res[tot] += no[i].second)%=rhl;
33         else (res[++tot] += no[i].second)%=rhl,last = no[i].first;
34     }
35     ll ans = qsm(((ll)(1+n)*(ll)n>>1)%rhl,m-tot);
36     for (int i = 1;i <= tot;++i)
37         (ans *= (((ll)(1+n)*(ll)n>>1)%rhl-res[i])%rhl)%=rhl;
38     printf("%lld",(ans+rhl)%rhl);
39     fclose(stdin); fclose(stdout);
40     return 0;
41 }
View Code

 

BZOJ 2751 容易题

标签:

原文地址:http://www.cnblogs.com/mmlz/p/4297873.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!