动态规划。
dp[0][i]: A[0, ..., i-1]的maximum product subarray,
dp[1][i]: A[0, ..., i-1)的minimum product subarray.
初始化dp[0][0] = dp[1][0] = A[0].
递推公式:
dp[0][i] = max(dp[0][i-1]*A[i], dp[1][i-1]*A[i]); dp[0][i] = max(dp[0][i], A[i]); dp[1][i] = min(dp[0][i-1]*A[i], dp[1][i-1]*A[i]); dp[1][i] = min(dp[1][i], A[i]);
代码:
class Solution
{
public:
int maxProduct(int A[], int n)
{
int dp[2][n];
dp[0][0] = A[0];
dp[1][0] = A[0];
for (int i = 1; i < n; ++ i)
{
dp[0][i] = max(dp[0][i-1]*A[i], dp[1][i-1]*A[i]);
dp[0][i] = max(dp[0][i], A[i]);
dp[1][i] = min(dp[0][i-1]*A[i], dp[1][i-1]*A[i]);
dp[1][i] = min(dp[1][i], A[i]);
}
return *max_element(dp[0], dp[0]+n);
}
};LeetCode 152. Maximum Product Subarray
原文地址:http://blog.csdn.net/stephen_wong/article/details/43917267