码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 3264 Balanced Lineup(RMQ详解)

时间:2015-02-25 14:15:39      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:acm   dp   rmq   

RMQ:(区间最值问题)

本质上是动态规划,用d(i, j) 表示 从 i 开始的长度为 2^j 的一段元素的最小值,则可以用递推的方法计算d(i, j) : d(i, j) = min{ d(i, j-1), d(i + 2^(j-1), j-1)}

由于2^j <= n 因此 d数组中元素个数不超过nlogn, 因此总时间复杂度为O(nlogn);

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <cmath>
#include <stack>
#define LL long long
using namespace std;
const int MAXN = 50000 + 10;
int d[MAXN][20];
int A[MAXN];
int n, q;
void RMQ_init_min()
{
    for(int i=0;i<n;i++) d[i][0] = A[i];
    for(int j=1;(1<<j) <= n;j++)
        for(int i=0;i+(1<<j)-1 < n;i++)
            d[i][j] = min(d[i][j-1], d[i+(1<<(j-1))][j-1]);
}
int RMQ_min(int L, int R)
{
    int k = 0;
    while((1<<(k+1)) <= R - L + 1) k++;
    return min(d[L][k], d[R-(1<<k)+1][k]);
}
int dp[MAXN][20];
void RMQ_init_max()
{
    for(int i=0;i<n;i++) dp[i][0] = A[i];
    for(int j=1;(1<<j) <= n;j++)
        for(int i=0;i+(1<<j)-1 < n;i++)
            dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
}
int RMQ_max(int L, int R)
{
    int k = 0;
    while((1<<(k+1)) <= R - L + 1) k++;
    return max(dp[L][k], dp[R-(1<<k)+1][k]);
}
int main()
{
    while(scanf("%d%d", &n, &q)!=EOF)
    {
        for(int i=0;i<n;i++)
            scanf("%d", &A[i]);
        RMQ_init_min();
        RMQ_init_max();
        int L, R;
        while(q--)
        {
            scanf("%d%d", &L, &R);
            int l = RMQ_min(L-1, R-1);
            int r = RMQ_max(L-1, R-1);
            printf("%d\n", r - l);
        }
    }
    return 0;
}


POJ 3264 Balanced Lineup(RMQ详解)

标签:acm   dp   rmq   

原文地址:http://blog.csdn.net/moguxiaozhe/article/details/43936765

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!