码迷,mamicode.com
首页 > 其他好文 > 详细

poj 3264 Balanced Lineup(简单线段树 或 rmq)

时间:2015-02-26 13:30:05      阅读:127      评论:0      收藏:0      [点我收藏+]

标签:rmq 线段树

Language:
Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 36833   Accepted: 17252
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source



求区间最大减最小


线段树代码:


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define eps 1e-8
typedef __int64 ll;

using namespace std;

#define N 50005

int n,m,a[N];

struct stud{
 int le,ri;
 int mi,ma;
}f[N*4];

void build(int pos,int le,int ri)
{
	f[pos].le=le;
	f[pos].ri=ri;
	if(le==ri)
	{
		f[pos].mi=f[pos].ma=a[le];
		return ;
	}

	int mid=MID(le,ri);

	build(L(pos),le,mid);
	build(R(pos),mid+1,ri);

	f[pos].ma=max(f[L(pos)].ma,f[R(pos)].ma);
	f[pos].mi=min(f[L(pos)].mi,f[R(pos)].mi);
}

int querymin(int pos,int le,int ri)
{
     if(f[pos].le>=le&&f[pos].ri<=ri)
			return f[pos].mi;

	 int mid=MID(f[pos].le,f[pos].ri);

	 if(mid>=ri)
		return querymin(L(pos),le,ri);

	 if(mid<le)
		return querymin(R(pos),le,ri);

	 return min(querymin(L(pos),le,mid),querymin(R(pos),mid+1,ri));
}

int querymax(int pos,int le,int ri)
{
     if(f[pos].le>=le&&f[pos].ri<=ri)
			return f[pos].ma;

	 int mid=MID(f[pos].le,f[pos].ri);

	 if(mid>=ri)
		return querymax(L(pos),le,ri);

	 if(mid<le)
		return querymax(R(pos),le,ri);

	 return max(querymax(L(pos),le,mid),querymax(R(pos),mid+1,ri));
}


int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
    #endif // ONLINE_JUDGE
		
	
	int i,j;
	while(~scanf("%d%d",&n,&m))
	{
		for(i=1;i<=n;i++)
			scanf("%d",&a[i]);

		build(1,1,n);
        int le,ri;

		while(m--)
		{
			scanf("%d%d",&le,&ri);
			printf("%d\n",querymax(1,le,ri)-querymin(1,le,ri));
		}
	}
	return 0;
}


RMQ 代码:


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define eps 1e-8
typedef __int64 ll;

using namespace std;

#define N  50005

int dpmin[N][20];
int dpmax[N][20];
int n,m,a[N];

void inint()
{
	int i,j;
	for(i=1;i<=n;i++)
		dpmin[i][0]=dpmax[i][0]=a[i];

	for(j=1;(1<<j)<=n+1;j++)
		for(i=1;i+(1<<j)-1<=n;i++)
	{
		  dpmin[i][j]=min(dpmin[i][j-1],dpmin[i+(1<<(j-1))][j-1]);
		  dpmax[i][j]=max(dpmax[i][j-1],dpmax[i+(1<<(j-1))][j-1]);
	}
}

inline int getmax(int le,int ri)
{
	int k=(int)(log(ri-le+1+0.0)/log(2.0));
	return max(dpmax[le][k],dpmax[ri-(1<<k)+1][k]);
}

inline int getmin(int le,int ri)
{
	int k=(int)(log(ri-le+1+0.0)/log(2.0));
	return min(dpmin[le][k],dpmin[ri-(1<<k)+1][k]);
}


int main()
{

//	#ifndef ONLINE_JUDGE
//	  freopen("in.txt","r",stdin);
//	#endif // ONLINE_JUDGE

    int i,j;
	while(~scanf("%d%d",&n,&m))
	{
		for(i=1;i<=n;i++)
			scanf("%d",&a[i]);

		inint();

		int le,ri;
		while(m--)
		{
			scanf("%d%d",&le,&ri);
			printf("%d\n",getmax(le,ri)-getmin(le,ri));
		}

	}
	return 0;
}








poj 3264 Balanced Lineup(简单线段树 或 rmq)

标签:rmq 线段树

原文地址:http://blog.csdn.net/u014737310/article/details/43951597

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!