码迷,mamicode.com
首页 > 其他好文 > 详细

Caesar's Legions(dp)

时间:2015-03-01 22:11:18      阅读:188      评论:0      收藏:0      [点我收藏+]

标签:

Caesar‘s Legions
Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u
Submit Status

Description

Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.

Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.

Input

The only line contains four space-separated integers n1n2k1k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.

Output

Print the number of beautiful arrangements of the army modulo 100000000(108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.

Sample Input

Input
2 1 1 10
Output
1
Input
2 3 1 2
Output
5
Input
2 4 1 1
Output
0

Hint

Let‘s mark a footman as 1, and a horseman as 2.

In the first sample the only beautiful line-up is: 121

In the second sample 5 beautiful line-ups exist: 12122, 12212, 21212, 21221, 22121

 

技术分享
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 long long ans;
 6 long long dp1[110][110][12];
 7 long long dp2[110][110][12];
 8 int main()
 9 {
10     int n1,n2,k1,k2,i,j,k;
11     while(scanf("%d%d%d%d",&n1,&n2,&k1,&k2)!=EOF){
12         memset(dp1,0,sizeof(dp1)); 
13         memset(dp2,0,sizeof(dp2));
14         dp1[1][0][1]=1; dp2[0][1][1]=1;
15         for(i=0;i<=n1;i++){
16             for(j=0;j<=n2;j++){
17                 for(k=1;k<=k1;k++){
18                     if(dp1[i][j][k]){
19                         if(k!=k1){
20                             dp1[i+1][j][k+1]+=dp1[i][j][k];
21                             dp1[i+1][j][k+1]%=100000000;
22                         }
23                         dp2[i][j+1][1]+=dp1[i][j][k];
24                         dp2[i][j+1][1]%=100000000;
25                     }
26                 }
27                 for(k=1;k<=k2;k++){
28                     if(dp2[i][j][k]){
29                         if(k!=k2){
30                             dp2[i][j+1][k+1]+=dp2[i][j][k];
31                             dp2[i][j+1][k+1]%=100000000;
32                         }
33                         dp1[i+1][j][1]+=dp2[i][j][k];
34                         dp1[i+1][j][1]%=100000000;
35                     }
36                 }
37             }
38         }
39         ans=0;
40         for(i=1;i<=k1;i++){
41             ans+=dp1[n1][n2][i];
42             ans%=100000000;
43         }
44         for(i=1;i<=k2;i++){
45             ans+=dp2[n1][n2][i];
46             ans%=100000000;
47         }
48         printf("%I64d\n",ans);
49     }
50     return 0;
51 }
View Code

 

 

Caesar's Legions(dp)

标签:

原文地址:http://www.cnblogs.com/get-an-AC-everyday/p/4307553.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!