题目大意:给定n个操作,每个操作有四种形式,操作之后若<L就变成L,>R就变成R,现在给定q个输入,求他们的输出
n,q<=10W
将这q个数建立线段树,四个操作都可以在线段树上完成
但是溢出怎么办呢?
容易发现若x<=y,那么操作过后x一定<=y
因为四个操作都是线性的,溢出也不会反转两个数的大小关系
那么我们可以预先将q个数排序 那么溢出的数一定是连续的两段 区间修改就行了
至于怎么找两端溢出的区间…… 每个节点维护一个区间最大值和最小值就好了
此外数据还是比较良心的 不会出现爆long long这种P事 放心写吧
这么简单的思路我他妈的居然写了整整四遍的代码- - 下次写代码之前一定要想清楚- - 至少TM先手模拟过样例啊QAQ
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 100100 using namespace std; int n,m,L,R; int q[M]; long long a[M]; struct Operation{ int type,x; friend istream& operator >> (istream &_,Operation &o) { char p[10]; scanf("%s%d",p,&o.x); switch(p[0]) { case '+':o.type=1;break; case '-':o.type=2;break; case '*':o.type=3;break; case '@':o.type=4;break; } return _; } }operations[M]; struct Segtree{ Segtree *ls,*rs; long long times_mark,k,b; long long min_num,max_num; Segtree():ls(0x0),rs(0x0),times_mark(1),k(0),b(0) {} void Build_Tree(int x,int y) { int mid=x+y>>1; min_num=a[x]; max_num=a[y]; if(x==y) return ; (ls=new Segtree)->Build_Tree(x,mid); (rs=new Segtree)->Build_Tree(mid+1,y); } void Get_Mark(int x,int y,long long _,long long __,long long ___) { min_num=_*min_num+__*a[x]+___; max_num=_*max_num+__*a[y]+___; times_mark*=_;k*=_;b*=_; k+=__; b+=___; } void Push_Down(int x,int y) { int mid=x+y>>1; ls->Get_Mark(x,mid,times_mark,k,b); rs->Get_Mark(mid+1,y,times_mark,k,b); times_mark=1;k=b=0; } int Get_Ans(int x,int y,int pos) { int mid=x+y>>1; if(x==y) return max_num; Push_Down(x,y); if(pos<=mid) return ls->Get_Ans(x,mid,pos); else return rs->Get_Ans(mid+1,y,pos); } void Get_L(int x,int y) { int mid=x+y>>1; if(x==y) { Get_Mark(x,y,0,0,L); return ; } Push_Down(x,y); if(rs->min_num<L) ls->Get_Mark(x,mid,0,0,L),rs->Get_L(mid+1,y); else ls->Get_L(x,mid); min_num=ls->min_num; max_num=rs->max_num; } void Get_R(int x,int y) { int mid=x+y>>1; if(x==y) { Get_Mark(x,y,0,0,R); return ; } Push_Down(x,y); if(ls->max_num>R) rs->Get_Mark(mid+1,y,0,0,R),ls->Get_R(x,mid); else rs->Get_R(mid+1,y); min_num=ls->min_num; max_num=rs->max_num; } }*tree=new Segtree; int main() { int i; cin>>n>>L>>R; for(i=1;i<=n;i++) cin>>operations[i]; cin>>m; for(i=1;i<=m;i++) scanf("%d",&q[i]),a[i]=q[i]; sort(a+1,a+m+1); tree->Build_Tree(1,m); for(i=1;i<=n;i++) { switch(operations[i].type) { case 1:tree->Get_Mark(1,m,1,0,operations[i].x);break; case 2:tree->Get_Mark(1,m,1,0,-operations[i].x);break; case 3:tree->Get_Mark(1,m,operations[i].x,0,0);break; case 4:tree->Get_Mark(1,m,1,operations[i].x,0);break; } if(tree->min_num<L) tree->Get_L(1,m); if(tree->max_num>R) tree->Get_R(1,m); } for(i=1;i<=m;i++) { int pos=lower_bound(a+1,a+m+1,q[i])-a; printf("%d\n",tree->Get_Ans(1,m,pos) ); } return 0; }
原文地址:http://blog.csdn.net/popoqqq/article/details/44007181