码迷,mamicode.com
首页 > 其他好文 > 详细

4367

时间:2014-06-02 20:04:44      阅读:262      评论:0      收藏:0      [点我收藏+]

标签:c   style   class   a   ext   color   

$\bf(Lusin定理)$设$f\left( x \right)$是可测集$E$上几乎处处有限的可测函数,

则对任给$\delta  > 0$,存在闭集$F \subset E$,使得$m\left( {E\backslash F} \right) < \delta $,且$f\left( x \right)$在$F$上连续

$\bf证明$  由于$m\left( {E\left( {\left| f \right| =  + \infty } \right)} \right) = 0$,我们不妨设$f\left( x \right)$是处处有限的

   $\bf(1)$首先,我们考虑$f\left( x \right)$是简单函数的情况,于是

f(x)=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣χbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣(x),xE=?bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣
由于每个${E_i}$是可测的,则对任给$\delta  > 0$,存在闭集${F_i} \subset {E_i}$,使得
m(Ebubuko.com,布布扣ibubuko.com,布布扣?Fbubuko.com,布布扣ibubuko.com,布布扣)<δ/nbubuko.com,布布扣

又由于$f\left( x \right)$在每个${F_i}$上是常值函数,从而在${F_i}$上连续;而${F_1}, \cdots ,{F_n}$互不相交,令

F=?bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣Fbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣
则闭集$F \subset E$,使得$m\left( {E\backslash F} \right) = \sum\limits_{i = 1}^n {m\left( {{E_i}\backslash {F_i}} \right)}  < \delta $,且$f\left( x \right)$在$F$上连续

   $\bf(2)$其次,我们考虑$f\left( x \right)$是一般可测函数的情况,由于可作变换

g(x)=f(x)bubuko.com,布布扣1+|f(x)|bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
因此我们不妨设$f\left( x \right)$是有界可测函数,于是存在可测的简单函数列$\left\{ {{\varphi _k}\left( x \right)} \right\}$在$E$上一致收敛于$f\left( x \right)$,从而由$\bf(1)$知,对任给$\delta  > 0$,存在闭集${F_k} \subset {E}$,使得$m\left( {E\backslash {F_k}} \right) < \frac{\delta }{{{2^k}}}$,且${{\varphi _k}\left( x \right)}$在${F_k} $上连续,令
F=?bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣 Fbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣
则${F }$为闭集,且

m(E?F)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=m(E??bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣)bubuko.com,布布扣=m(?bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣(E?Fbubuko.com,布布扣kbubuko.com,布布扣))bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣m(E?Fbubuko.com,布布扣kbubuko.com,布布扣) <δ bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
由于${{\varphi _k}\left( x \right)}$在${F }$上连续,且一致收敛于$f\left( x \right)$,所以$f\left( x \right)$在${F }$连续

 

 

 

4367,布布扣,bubuko.com

4367

标签:c   style   class   a   ext   color   

原文地址:http://www.cnblogs.com/ly758241/p/3762711.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!