标签:
卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,2674440, 9694845,35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ... 令h(0)=1,h(1)=1,
catalan数满足递推式[1]:
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2 h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
递推关系的另类解为: h(n)=c(2n,n)-c(2n,n+1)(n=0,1,2,...)
卡特兰数的递推公式为:h(n)=h(n-1)*(4*n-2)/(n+1);
应用问题 实质上都是递推等式的应用 : 1:矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序, 只用括号表示成对的乘积, 试问有几种括号化的方案?(h(n-1)种)[3]出栈次序
2: 一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?[4-5]
3: 类似问题 买票找零 有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票, 剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零? (将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
4:
凸多边形三角划分 在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。 现在的任务是键盘上输入凸多边形的边数n,求不同划分的方案数f(n)。比如当n=6时,f(6)=14。[6] 分析
因为凸多边形的任意一条边必定属于某一个三角形,所以我们以某一条边为基准, 以这条边的两个顶点为起点P1和终点Pn(P即Point),将该凸多边形的顶点依序标记为P1、P2、……、Pn, 再在该凸多边形中找任意一个不属于这两个点的顶点Pk(2<=k<=n-1),来构成一个三角形, 用这个三角形把一个凸多边形划分成两个凸多边形,其中一个凸多边形,是由P1,P2,……, Pk构成的凸k边形(顶点数即是边数),另一个凸多边形,是由Pk,Pk+1,……,Pn构成的凸n-k+1边形。 此时,我们若把Pk视为确定一点,那么根据乘法原理,f(n)的问题就等价于——凸k多边形的划分方案数乘 以凸n-k+1多边形的划分方案数,即选择Pk这个顶点的f(n)=f(k)×f(n-k+1)。 而k可以选2到n-1,所以再根据加法原理,将k取不同值的划分方案相加,得到的总方案数为: f(n)=f(2)f(n-2+1)+f(3)f(n-3+1)+……+f(n-1)f(2)。看到此处,再看看卡特兰数的递推式, 答案不言而喻,即为f(n)=h(n-2) (n=2,3,4,……)。 最后,令f(2)=1,f(3)=1。 此处f(2)=1和f(3)=1的具体缘由须参考详尽的“卡特兰数”, 也许可从凸四边形f(4)=f(2)f(3)+ f(3)f(2)=2×f(2)f(3)倒推, 四边形的划分方案不用规律推导都可以知道是2,那么2×f(2)f(3)=2,则f(2)f(3)=1, 又f(2)和f(3)若存在的话一定是整数,则f(2)=1,f(3)=1。
5:
类似问题 编辑本段 一位大城市的律师在她住所以北n个街区和以东n个街区处工作。 每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线, 那么有多少条可能的道路? 在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
下面总结了卡特兰数的一个模板 这里用的是 卡特兰数的递推公式为:h(n)=h(n-1)*(4*n-2)/(n+1); 也就是一个高精度问题的求解
hdu:1134
#include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std;
int a[105][105]; //大数卡特兰数
int b[105]; //卡特兰数的长度
void catalan() //求卡特兰数
{
int i, j, len, carry, temp;
a[1][0] = b[1] = 1;
len = 1;
for(i = 2; i <= 100; i++)
{
for(j = 0; j < len; j++) //乘法
a[i][j] = a[i-1][j]*(4*(i-1)+2);
carry = 0;
for(j = 0; j < len; j++) //处理相乘结果
{
temp = a[i][j] + carry;
a[i][j] = temp % 10;
carry = temp / 10;
}
while(carry) //进位处理
{
a[i][len++] = carry % 10;//这里这样写是为了记住b[i]所对应的len
carry /= 10;
}
carry = 0;
for(j = len-1; j >= 0; j--) //除法,这里看的不是很懂。比如28/6的话就等于4了
{
temp = carry*10 + a[i][j];
a[i][j] = temp/(i+1);
carry = temp%(i+1);
}
while(!a[i][len-1]) //高位零处理
len --;
b[i] = len;
}
}
int main()
{
int i, n;
catalan();
while(scanf("%d", &n) != EOF)
{
for(i = b[n]-1; i>=0; i--)//这样话,对于打表求解的话确实很省时间
{
printf("%d", a[n][i]);
}
printf("\n");
}
return 0;
}
标签:
原文地址:http://www.cnblogs.com/ACWQYYY/p/4312282.html