dataLayer作为整个网络的输入层,
数据从leveldb中取。leveldb的数据是通过图片转换过来的。
网络建立的时候,
datalayer主要是负责设置一些参数,比如batchsize,channels,height,width等。
这次会通过读leveldb一个数据块来获取这些信息。
然后启动一个线程来预先从leveldb拉取一批数据,这些数据是图像数据和图像标签。
正向传播的时候,
datalayer就把预先拉取好数据拷贝到指定的cpu或者gpu的内存。
然后启动新线程再预先拉取数据,这些数据留到下一次正向传播使用。
// Copyright 2013 Yangqing Jia #include <stdint.h> #include <leveldb/db.h> #include <pthread.h> #include <string> #include <vector> #include "caffe/layer.hpp" #include "caffe/util/io.hpp" #include "caffe/vision_layers.hpp" using std::string; namespace caffe { template <typename Dtype> void* DataLayerPrefetch(void* layer_pointer) { CHECK(layer_pointer); DataLayer<Dtype>* layer = reinterpret_cast<DataLayer<Dtype>*>(layer_pointer); CHECK(layer); Datum datum; CHECK(layer->prefetch_data_); Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();//数据 Dtype* top_label = layer->prefetch_label_->mutable_cpu_data();//标签 const Dtype scale = layer->layer_param_.scale(); const int batchsize = layer->layer_param_.batchsize(); const int cropsize = layer->layer_param_.cropsize(); const bool mirror = layer->layer_param_.mirror(); if (mirror && cropsize == 0) {//当前实现需要同时设置mirror和cropsize LOG(FATAL) << "Current implementation requires mirror and cropsize to be " << "set at the same time."; } // datum scales const int channels = layer->datum_channels_; const int height = layer->datum_height_; const int width = layer->datum_width_; const int size = layer->datum_size_; const Dtype* mean = layer->data_mean_.cpu_data(); for (int itemid = 0; itemid < batchsize; ++itemid) {//每一批数据的数量是batchsize,一个循环拉取一张? // get a blob CHECK(layer->iter_); CHECK(layer->iter_->Valid()); datum.ParseFromString(layer->iter_->value().ToString());//利用迭代器拉取下一批数据 const string& data = datum.data(); if (cropsize) {//如果需要裁剪 CHECK(data.size()) << "Image cropping only support uint8 data"; int h_off, w_off; // We only do random crop when we do training. //只是在训练阶段做随机裁剪 if (Caffe::phase() == Caffe::TRAIN) { // NOLINT_NEXT_LINE(runtime/threadsafe_fn) h_off = rand() % (height - cropsize); // NOLINT_NEXT_LINE(runtime/threadsafe_fn) w_off = rand() % (width - cropsize); } else {//测试阶段固定裁剪 h_off = (height - cropsize) / 2; w_off = (width - cropsize) / 2; } // NOLINT_NEXT_LINE(runtime/threadsafe_fn) //怎么感觉下面两种情况的代码是一样的? if (mirror && rand() % 2) { // Copy mirrored version for (int c = 0; c < channels; ++c) { for (int h = 0; h < cropsize; ++h) { for (int w = 0; w < cropsize; ++w) { top_data[((itemid * channels + c) * cropsize + h) * cropsize + cropsize - 1 - w] = (static_cast<Dtype>( (uint8_t)data[(c * height + h + h_off) * width + w + w_off]) - mean[(c * height + h + h_off) * width + w + w_off]) * scale; } } } } else { // Normal copy for (int c = 0; c < channels; ++c) { for (int h = 0; h < cropsize; ++h) { for (int w = 0; w < cropsize; ++w) { top_data[((itemid * channels + c) * cropsize + h) * cropsize + w] = (static_cast<Dtype>( (uint8_t)data[(c * height + h + h_off) * width + w + w_off]) - mean[(c * height + h + h_off) * width + w + w_off]) * scale; } } } } } else {//如果不需要裁剪 // we will prefer to use data() first, and then try float_data() //我们优先考虑data(),然后float_data() if (data.size()) { for (int j = 0; j < size; ++j) { top_data[itemid * size + j] = (static_cast<Dtype>((uint8_t)data[j]) - mean[j]) * scale; } } else { for (int j = 0; j < size; ++j) { top_data[itemid * size + j] = (datum.float_data(j) - mean[j]) * scale; } } } top_label[itemid] = datum.label(); // go to the next iter layer->iter_->Next(); if (!layer->iter_->Valid()) { // We have reached the end. Restart from the first. DLOG(INFO) << "Restarting data prefetching from start."; layer->iter_->SeekToFirst(); } } return reinterpret_cast<void*>(NULL); } template <typename Dtype> DataLayer<Dtype>::~DataLayer<Dtype>() { // Finally, join the thread CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed."; } template <typename Dtype> void DataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { CHECK_EQ(bottom.size(), 0) << "Data Layer takes no input blobs."; CHECK_EQ(top->size(), 2) << "Data Layer takes two blobs as output."; // Initialize the leveldb leveldb::DB* db_temp; leveldb::Options options; options.create_if_missing = false; options.max_open_files = 100; LOG(INFO) << "Opening leveldb " << this->layer_param_.source(); leveldb::Status status = leveldb::DB::Open( options, this->layer_param_.source(), &db_temp); CHECK(status.ok()) << "Failed to open leveldb " << this->layer_param_.source() << std::endl << status.ToString(); db_.reset(db_temp); iter_.reset(db_->NewIterator(leveldb::ReadOptions()));//通过迭代器来操纵leveldb iter_->SeekToFirst(); // Check if we would need to randomly skip a few data points //是否要随机跳过一些数据 if (this->layer_param_.rand_skip()) { // NOLINT_NEXT_LINE(runtime/threadsafe_fn) unsigned int skip = rand() % this->layer_param_.rand_skip(); LOG(INFO) << "Skipping first " << skip << " data points."; while (skip-- > 0) {//循环次数 iter_->Next(); if (!iter_->Valid()) { iter_->SeekToFirst(); } } } // Read a data point, and use it to initialize the top blob. //读取一个数据点,用来初始化topblob。所谓初始化,只要是指reshape。 //可以观察到下面iter_调用调用next。所以这次读取只是用来读取出来channels等参数的,不作处理。 Datum datum; datum.ParseFromString(iter_->value().ToString());//利用迭代器读取第一个数据点 // image图像数据 int cropsize = this->layer_param_.cropsize();//裁剪大小 if (cropsize > 0) {//需要裁剪 (*top)[0]->Reshape( this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize); prefetch_data_.reset(new Blob<Dtype>( this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize)); } else {//不需要裁剪 (*top)[0]->Reshape( this->layer_param_.batchsize(), datum.channels(), datum.height(), datum.width()); prefetch_data_.reset(new Blob<Dtype>( this->layer_param_.batchsize(), datum.channels(), datum.height(), datum.width())); } LOG(INFO) << "output data size: " << (*top)[0]->num() << "," << (*top)[0]->channels() << "," << (*top)[0]->height() << "," << (*top)[0]->width(); // label标签数据 (*top)[1]->Reshape(this->layer_param_.batchsize(), 1, 1, 1); prefetch_label_.reset( new Blob<Dtype>(this->layer_param_.batchsize(), 1, 1, 1)); // datum size datum_channels_ = datum.channels(); datum_height_ = datum.height(); datum_width_ = datum.width(); datum_size_ = datum.channels() * datum.height() * datum.width(); CHECK_GT(datum_height_, cropsize); CHECK_GT(datum_width_, cropsize); // check if we want to have mean是否要减去均值 if (this->layer_param_.has_meanfile()) { BlobProto blob_proto; LOG(INFO) << "Loading mean file from" << this->layer_param_.meanfile(); ReadProtoFromBinaryFile(this->layer_param_.meanfile().c_str(), &blob_proto); data_mean_.FromProto(blob_proto); CHECK_EQ(data_mean_.num(), 1); CHECK_EQ(data_mean_.channels(), datum_channels_); CHECK_EQ(data_mean_.height(), datum_height_); CHECK_EQ(data_mean_.width(), datum_width_); } else { // Simply initialize an all-empty mean. data_mean_.Reshape(1, datum_channels_, datum_height_, datum_width_); } // Now, start the prefetch thread. Before calling prefetch, we make two // cpu_data calls so that the prefetch thread does not accidentally make // simultaneous cudaMalloc calls when the main thread is running. In some // GPUs this seems to cause failures if we do not so. prefetch_data_->mutable_cpu_data(); prefetch_label_->mutable_cpu_data(); data_mean_.cpu_data(); DLOG(INFO) << "Initializing prefetch"; CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch<Dtype>, reinterpret_cast<void*>(this))) << "Pthread execution failed."; DLOG(INFO) << "Prefetch initialized."; } template <typename Dtype> void DataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) { // First, join the thread 等待线程结束 CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed."; // Copy the data拷贝数据到top,即该层的输出 memcpy((*top)[0]->mutable_cpu_data(), prefetch_data_->cpu_data(), sizeof(Dtype) * prefetch_data_->count()); memcpy((*top)[1]->mutable_cpu_data(), prefetch_label_->cpu_data(), sizeof(Dtype) * prefetch_label_->count()); // Start a new prefetch thread启动新线程拉取下一批数据 CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch<Dtype>, reinterpret_cast<void*>(this))) << "Pthread execution failed."; } // The backward operations are dummy - they do not carry any computation. template <typename Dtype> Dtype DataLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const bool propagate_down, vector<Blob<Dtype>*>* bottom) { return Dtype(0.); } INSTANTIATE_CLASS(DataLayer); } // namespace caffe
神经网络caffe框架源码解析--data_layer.cpp类代码研究,布布扣,bubuko.com
神经网络caffe框架源码解析--data_layer.cpp类代码研究
原文地址:http://blog.csdn.net/linger2012liu/article/details/27348265