标签:
给定两直线,判定相交,重合,或求出交点
验模板的题目
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; int t; struct Point { double x, y; Point() {} Point(double x, double y) { this->x = x; this->y = y; } void read() { scanf("%lf%lf", &x, &y); } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } const double eps = 1e-8; int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积 bool LineCoincide(Point p1, Point p2, Point p3) { return dcmp(Cross(p2 - p1, p3 - p1)) == 0; } bool LineParallel(Point P, Vector v, Point Q, Vector w) { return dcmp(v.x * w.y - v.y * w.x) == 0; } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } int main() { scanf("%d", &t); printf("INTERSECTING LINES OUTPUT\n"); while (t--) { Point p1, p2, p3, p4; p1.read(); p2.read(); p3.read(); p4.read(); if (LineCoincide(p1, p2, p3) && LineCoincide(p1, p2, p4)) printf("LINE\n"); else if (LineParallel(p1, p2 - p1, p3, p4 - p3)) printf("NONE\n"); else { Point ans = GetLineIntersection(p1, p2 - p1, p3, p4 - p3); printf("POINT %.2f %.2f\n", ans.x, ans.y); } } printf("END OF OUTPUT\n"); return 0; }
POJ 1269 Intersecting Lines(计算几何)
标签:
原文地址:http://blog.csdn.net/accelerator_/article/details/44080923