The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens‘ placement, where ‘Q‘ and ‘.‘ both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
bool nextPermutation(vector<int> &num)
{
int i = num.size() - 1;
while (i >= 1)
{
if(num[i] > num[i - 1])
{
--i;
int ii = num.size() - 1;
while (ii > i && num[ii] <= num[i]) --ii;
if(ii > i)
{
swap(num[i], num[ii]);
reverse(num.begin() + i + 1, num.end());
return true;
}
}
else
--i;
}
return false;
}
bool check(vector<int> &grids)
{
int len = grids.size();
for (int i = 0; i < len; ++i)
for (int j = i + 1; j < len; ++j)
{
if(abs(i - j) == abs(grids[i] - grids[j]))
return false;
}
return true;
}
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > re;
if(n < 1)
return re;
if(n == 1)
return vector<vector<string> >(1,vector<string>(1,"Q"));
vector<int> grids(n,0);
for (int i = 0; i < n; ++i)
{
grids[i] = i;
}
while (nextPermutation(grids))
{
if(check(grids))
{
vector<string> one_solve;
for(int i = 0; i < n; ++i)
{
string line(n,'.');
line[grids[i]] = 'Q';
one_solve.push_back(line);
}
re.push_back(one_solve);
}
}
return re;
}【leetcode】N-queens,布布扣,bubuko.com
原文地址:http://blog.csdn.net/shiquxinkong/article/details/27965783