码迷,mamicode.com
首页 > 其他好文 > 详细

SGU[130] CIrcle

时间:2015-03-07 11:35:41      阅读:110      评论:0      收藏:0      [点我收藏+]

标签:

Description

描述

On a circle border there are 2k different points A1, A2, ..., A2k, located contiguously. These points connect k chords so that each of points A1, A2, ..., A2k is the end point of one chord. Chords divide the circle into parts. You have to find N - the number of different ways to connect the points so that the circle is broken into minimal possible amount of parts P.

在圆的边界上连续的排列着2k个不同的点A1, A2, ..., A2k。这些点连接着k条弦,因此A1, A2, ..., A2k分别是这些弦中一条弦的端点,这些弦将圆分成若干个部分。你需要计算N——圆被分成的最少的部分数目P,以及这样的方案数N。

 

InpPut

输入

The first line contains the integer k (1 <= k <= 30).

第一行包含一个整数k (1 <= k <= 30)。


Output

输出

The first line should contain two numbers N and P delimited by space.

第一行包含两个数字N和P,以空格分隔。


Sample Input

样例输入

2


Sample Output

样例输出

2 3

 

Analysis

分析

我们可以采用分治的方法,固定某个点,从其上引一条弦,将圆分成左右两部分。我们可以将这两部分看成新的圆,那么方案数就是这两个圆的方案数相乘。

即:f[N] = sigma(f[i - 1] * f[N - i]),其中1 <= i <= N。f[i-1]表示左边的圆,为k = i - 1时的情况,f[N - i]为右边的圆,表示k = N - i时的情况。

这样,我们只要递推一下就可以了。

 

Solution

解决方案

#include <iostream>

using namespace std;

const int MAX = 32;

long long f[MAX];

int main()
{
	int N;
	f[0] = 1; f[1] = 1; f[2] = 2;
	for(int i = 3; i < MAX; i++)
	{
		for(int j = 1; j <= i; j++)
		{ f[i] += f[j - 1] * f[i - j]; }
	}
	while(cin >> N)
	{ cout << f[N] << " " << N + 1 << endl; }
	return 0;
}

  

这也算是一道数学题,然而想到分治这一点还是有些难度的。

SGU[130] CIrcle

标签:

原文地址:http://www.cnblogs.com/Ivy-End/p/4319967.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!