标签:数学 计算几何
链接:click here
题意:
给出一个三角形,求三角形内的整点;
皮克定理:S=a/2+b-1; S为多边形面积;a为多边形边上的点; b为多边形内的点;
a为边上的点可以由欧几里得定理gcd(x1-x0,y1-y0)求得点数;
另编程网站计蒜客35题也是一样的求法,只不过给出两点,实际写的话改成注释的那块就可以,链接:click here
代码:
#include <math.h>
#include <queue>
#include <map>
#include <set>
#include <deque>
#include <vector>
#include <stack>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
#define lowbit(a) a&-a
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define mem(a,b) memset(a,b,sizeof(a))
int dir[4][2]= {{1,0},{-1,0},{0,1},{0,-1}};
const double eps = 1e-6;
const double Pi = acos(-1.0);
static const int inf= ~0U>>2;
static const int N=30010;
int scan()
{
int res = 0, flag = 0;
char ch;
if((ch = getchar()) == '-') flag = 1;
else if(ch >= '0' && ch <= '9') res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9')
res = res * 10 + (ch - '0');
return flag ? -res : res;
}
void out(int a)
{
if(a < 0)
{
putchar('-');
a = -a;
}
if(a >= 10) out(a / 10);
putchar(a % 10 + '0');
}
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
struct point
{
int x,y;
} p[1000],pp[1000];
int acoss(point p1,point p2,point p0)
{
return abs((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x));
}
int main()
{
int a,area,ans;
while(cin>>p[0].x>>p[0].y>>p[1].x>>p[1].y>>p[2].x>>p[2].y)
{
//while(cin>>p[1].x>>p[1].y>>p[2].x)
// {
//p[0].x=0,p[0].y=0,p[2].y=0;
if(!p[0].x&&!p[0].y&&!p[1].x&&!p[1].y&&!p[2].x&&!p[2].y)break;
pp[0].x=abs(p[0].x-p[1].x);
pp[0].y=abs(p[0].y-p[1].y);
pp[1].x=abs(p[1].x-p[2].x);
pp[1].y=abs(p[1].y-p[2].y);
pp[2].x=abs(p[0].x-p[2].x);
pp[2].y=abs(p[0].y-p[2].y);
a=gcd(pp[0].x,pp[0].y)+gcd(pp[1].x,pp[1].y)+gcd(pp[2].x,pp[2].y);
area=acoss(p[1],p[2],p[0]);//求S
ans=(area-a+2)/2;
printf("%d\n",ans);
}
return 0;
}
HDU 1705 Count the grid && jisuanke 35 三角形内点
标签:数学 计算几何
原文地址:http://blog.csdn.net/u013050857/article/details/44133597