标签:
春秋战国时期,赵国地大物博,资源非常丰富,人民安居乐业。但许多国家对它虎视眈眈,准备联合起来对赵国发起一场战争。
显然,面对多个国家的部队去作战,赵国的兵力明显处于劣势。战斗力是决定战争成败的关键因素,一般来说,一支部队的战斗力与部队的兵力成正比。但当把一支部队分成若干个作战队伍时,这个部队的战斗力就会大大的增强。
一支部队的战斗力是可以通过以下两个规则计算出来的:
1.若一支作战队伍的兵力为N,则这支作战队伍的战斗力为N;
2.若将一支部队分为若干个作战队伍,则这支部队的总战斗力为这些作战队伍战斗力的乘积。
比如:一支部队的兵力为5时的战斗力分析如下:
情况 |
作战安排 |
总的战斗力 |
1 |
1,1,1,1,1(共分为5个作战队伍) |
1*1*1*1*1=1 |
2 |
1,1,1,2 (共分为4个作战队伍) |
1*1*1*2=2 |
3 |
1,2,2 (共分为3个作战队伍) |
1*2*2=4 |
4 |
1,1,3 (共分为3个作战队伍) |
1*1*3=3 |
5 |
2,3 (共分为2个作战队伍) |
2*3=6 |
6 |
1,4 (共分为2个作战队伍) |
1*4=4 |
7 |
5 (共分为1个作战队伍) |
5=5 |
显然,将部队分为2个作战队伍(一个为2,另一个为3),总的战斗力达到最大!
第一行: N 表示有N组测试数据。 (2<=N<=5)
接下来有N行,每行有一个整数Ti 代表赵国部队的兵力。 (1 <= Ti <= 1000)i=1,…N
对于每一行测试数据,输出占一行,仅一个整数S, 表示作战安排的最大战斗力。
254
64
#include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <math.h> #include <ctype.h> #include <time.h> #include <queue> #include <iterator> using namespace std; #define MAXN 9999 #define MAXSIZE 1010 #define DLEN 4 class BigNum { private: int a[1000]; //可以控制大数的位数 int len; public: BigNum(){ len = 1; memset(a, 0, sizeof(a)); } //构造函数 BigNum(const int); //将一个int类型的变量转化成大数 BigNum(const char*); //将一个字符串类型的变量转化为大数 BigNum(const BigNum &); //拷贝构造函数 BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算 friend istream& operator>>(istream&, BigNum&); //重载输入运算符 friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符 BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除运算 BigNum operator^(const int &)const; //大数的n次方运算 int operator%(const int &)const; //大数对一个int类型的变量进行取模运算 bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较 bool operator>(const int &t)const; //大数和一个int类型的变量的大小比较 void print(); //输出大数 }; BigNum::BigNum(const int b) //将一个int类型的变量转化为大数 { int c, d = b; len = 0; memset(a, 0, sizeof(a)); while (d>MAXN) { c = d - (d / (MAXN + 1))*(MAXN + 1); d = d / (MAXN + 1); a[len++] = c; } a[len++] = d; } BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数 { int t, k, index, L, i; memset(a, 0, sizeof(a)); L = strlen(s); len = L / DLEN; if (L%DLEN)len++; index = 0; for (i = L - 1; i >= 0; i -= DLEN) { t = 0; k = i - DLEN + 1; if (k<0)k = 0; for (int j = k; j <= i; j++) t = t * 10 + s[j] - '0'; a[index++] = t; } } BigNum::BigNum(const BigNum &T) :len(T.len) //拷贝构造函数 { int i; memset(a, 0, sizeof(a)); for (i = 0; i<len; i++) a[i] = T.a[i]; } BigNum & BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算 { int i; len = n.len; memset(a, 0, sizeof(a)); for (i = 0; i<len; i++) a[i] = n.a[i]; return *this; } istream& operator>>(istream &in, BigNum &b) { char ch[MAXSIZE * 4]; int i = -1; in >> ch; int L = strlen(ch); int count = 0, sum = 0; for (i = L - 1; i >= 0;) { sum = 0; int t = 1; for (int j = 0; j<4 && i >= 0; j++, i--, t *= 10) { sum += (ch[i] - '0')*t; } b.a[count] = sum; count++; } b.len = count++; return in; } ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符 { int i; cout << b.a[b.len - 1]; for (i = b.len - 2; i >= 0; i--) { printf("%04d", b.a[i]); } return out; } BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算 { BigNum t(*this); int i, big; big = T.len>len ? T.len : len; for (i = 0; i<big; i++) { t.a[i] += T.a[i]; if (t.a[i]>MAXN) { t.a[i + 1]++; t.a[i] -= MAXN + 1; } } if (t.a[big] != 0) t.len = big + 1; else t.len = big; return t; } BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算 { int i, j, big; bool flag; BigNum t1, t2; if (*this>T) { t1 = *this; t2 = T; flag = 0; } else { t1 = T; t2 = *this; flag = 1; } big = t1.len; for (i = 0; i<big; i++) { if (t1.a[i]<t2.a[i]) { j = i + 1; while (t1.a[j] == 0) j++; t1.a[j--]--; while (j>i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; } else t1.a[i] -= t2.a[i]; } t1.len = big; while (t1.a[t1.len - 1] == 0 && t1.len>1) { t1.len--; big--; } if (flag) t1.a[big - 1] = 0 - t1.a[big - 1]; return t1; } BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘 { BigNum ret; int i, j, up; int temp, temp1; for (i = 0; i<len; i++) { up = 0; for (j = 0; j<T.len; j++) { temp = a[i] * T.a[j] + ret.a[i + j] + up; if (temp>MAXN) { temp1 = temp - temp / (MAXN + 1)*(MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; } else { up = 0; ret.a[i + j] = temp; } } if (up != 0) ret.a[i + j] = up; } ret.len = i + j; while (ret.a[ret.len - 1] == 0 && ret.len>1)ret.len--; return ret; } BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算 { BigNum ret; int i, down = 0; for (i = len - 1; i >= 0; i--) { ret.a[i] = (a[i] + down*(MAXN + 1)) / b; down = a[i] + down*(MAXN + 1) - ret.a[i] * b; } ret.len = len; while (ret.a[ret.len - 1] == 0 && ret.len>1) ret.len--; return ret; } int BigNum::operator%(const int &b)const //大数对一个 int类型的变量进行取模 { int i, d = 0; for (i = len - 1; i >= 0; i--) d = ((d*(MAXN + 1)) % b + a[i]) % b; return d; } BigNum BigNum::operator^(const int &n)const //大数的n次方运算 { BigNum t, ret(1); int i; if (n<0)exit(-1); if (n == 0)return 1; if (n == 1)return *this; int m = n; while (m>1) { t = *this; for (i = 1; (i << 1) <= m; i <<= 1) t = t*t; m -= i; ret = ret*t; if (m == 1)ret = ret*(*this); } return ret; } bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较 { int ln; if (len>T.len)return true; else if (len == T.len) { ln = len - 1; while (a[ln] == T.a[ln] && ln >= 0) ln--; if (ln >= 0 && a[ln]>T.a[ln]) return true; else return false; } else return false; } bool BigNum::operator>(const int &t)const //大数和一个int类型的变量的大小比较 { BigNum b(t); return *this>b; } void BigNum::print() //输出大数 { int i; printf("%d", a[len - 1]); for (i = len - 2; i >= 0; i--) printf("%04d", a[i]); printf("\n"); } int a[3010]; BigNum p[3010]; int main(void) { int i, n; cin >> n; while (n--) { cin >> i; if (i == 1) cout << "1" << endl; else { BigNum bign(1); while (i) { if (i == 1) { bign = (bign / 3) * 4; i -= 1; } else if (i == 2) { bign = bign * 2; i -= 2; } else { bign = bign * 3; i -= 3; } } bign.print(); } } return 0; }
标签:
原文地址:http://blog.csdn.net/u014427196/article/details/44133613