码迷,mamicode.com
首页 > 其他好文 > 详细

超大背包问题

时间:2015-03-08 17:21:05      阅读:275      评论:0      收藏:0      [点我收藏+]

标签:

技术分享问题开始之前, 首先介绍一下利用C++ 头文件<algorithm>中的next_permutation()和pre_permutation产生0, 1, 2, 3, ... N - 1全排列。 这两个函数

产生全排的办法是通过字典序的原理。 next_permutation() 按照递增的办法产生字典序的下一个(唯一确定的, 与当前的排列之间不能夹杂了任何可行的

排列)。 prev_permutation() 产生当前排列的字典序的上一个排列, 是按照递减的顺序。 即产生的字典序比当前排列小的。

下面利用next_permutation产生0, 1, ... N - 1 的所有的全排列的方法:

// next_permutation example
#include <iostream>     // std::cout
#include <algorithm>    // std::next_permutation, std::sort

int main () {
  int myints[] = {1,2,3};

  std::sort (myints,myints+3); // 必须有这一步, 否则可能产生不完全

  std::cout << "The 3! possible permutations with 3 elements:\n";
  do {
    std::cout << myints[0] << ' ' << myints[1] << ' ' << myints[2] << '\n';
  } while ( std::next_permutation(myints,myints+3) );

  std::cout << "After loop: " << myints[0] << ' ' << myints[1] << ' ' << myints[2] << '\n';

  return 0;
}
运行结果如下:

技术分享

当然也可以采用递归的办法产生, 方法如下:

#include <iostream>

using namespace std;
void swap(char *fir, char *sec)
{
    char temp = *fir;
    *fir = *sec;
    *sec = temp;
}

/* arr is the string, curr is the current index to start permutation from and size is sizeof the arr */
void permutation(char * arr, int curr, int size)
{
    if(curr == size-1) // base case
    {
        for(int a=0; a<size; a++)
            cout << arr[a] << "\t";
        cout << endl;
    }

    else
    {
        for(int i=curr; i<size; i++)
        {
            swap(&arr[curr], &arr[i]); // 交换
            permutation(arr, curr+1, size); // 保持curr不变, 对其后面的进行排列
            swap(&arr[curr], &arr[i]); // 在交换回去
        }
    }
}

int main()
{

    char str[] = "abcd";

    permutation(str, 0, sizeof(str)-1);
    return 0;
}

运行结果:

技术分享


另外, 从0, ....N 取出其中的K 个数字的所有组合。 利用bitmask数组去mask所有的index, mask掉所有N - K 个元素, 从中取出K个元素。 当然, 我们需要求出所有的拍列(K个1)。

#include <algorithm>
#include <iostream>
#include <string>

using namespace std;
// choose K numbers from 0, 1, ..., N
void comb(int N, int K) {
    string bitmask(K, 1); // K leading 1's
    bitmask.resize(N, 0); // N - K trailing 0's

    // print all integers and permute bitmask
    do{
        for(int i = 0; i < N; ++i) { // [0, N - 1] integers
            if(bitmask[i]) cout << " " << i;
        }
        cout << endl;
    } while(prev_permutation(bitmask.begin(), bitmask.end()));
}

int main() {
    comb(5, 3);
}


运行结果如下:

技术分享

最后下面我们说说数组大小为n, 即有n个数, 我们需要从中选出所有可能的组合。 怎么办。 这就是枚举法。 例如我们的n = 4,即我们有四个元素, 所有可能的的组合的数目是2^4 = 16, 即每一个元素都对应选择或者不选这两个可能。 怎么办???

这也是 超大背包问题所面临的一个尖锐的问题。事实上, 我们采用的是如下的办法(核心代码):

for(int i = 0; i < 1 >> n; j++) {
    for(int j = 0; i < n; ++j) {
        if(i >> j & 1) {
            // doing your stuff
        }
    }
}

下面我们对上述代码分析:

  n = 4, 那么 1 >> 4 = 16, 即16种可能。 为了直观表示, 改为如下:

for(int i = 0; i < 16; j++) {
    for(int j = 0; i < n; ++j) {
        if(i >> j & 1) {
            // doing your stuff
        }
    }
}
技术分享


介绍完了, 言归正传, 下面说说最大背包问题!!技术分享

问题描述如下:

有重量和价值分别为(wi, vi)的n个物品。 从这些物品中挑选总重量不超过W的物品。 求挑选方案中总价值和的最大值。

限制条件:

1<=   n <= 40,

 1<=  wi, vi <= 10^(15)

 1 <= W <= 10^(15)。

输入:

n = 4

w = {2, 1, 3, 2}

v = {3, 2, 4, 2}

W = 5

输出:

7(挑选0, 1号和3号的物品)。


问题分析:

这个问题是背包问题。 不过这次重量和价值都可以是非常大的数值, 然而相比之下n却是比较小的数值。 使用DP(动态规划)求解背包问题的时间复杂度为

O(nW), 不太现实。 我们应该利用n比较小的特点求解。 所以我们没有采用动态规划的办法。

挑选物品的方法有2^n种。 所以不能直接枚举。 而是通过将其分成两半之后在枚举!!!! 这样就满足要求了。

7

 拆成两半之后的重量和价值, 每一部分最多只有20个(因为n最大为40). 我们把前半部分的重量总和和价值总和记为w1, v1。 这样在后半部分寻找总重

w2 < W - w1时, 使得v2最大的选取方法就好了。

为了从枚举得到的(w2, v2)集合中高效寻找 max{v2 | w2 < W - w1}的方法,。 首先我们需要排除所有的w2[i] <= w2[j]并且v2[i] >= v2[j]。 这一点我们可以通过按照w2, v2的字典序排序后简单做到。 此后剩余所有的元素满足 w2[i] < w2[j] <-------> v2[i] < v2[j]。 于是我们接下来只需要寻找w2[i] < W - w1的最大的i就可以了。 这可以通过二分搜索完成。

假如剩余元素的个数为M的话, 一次搜索所需要的时间为O(logM)。 由于 M <= 2^(n/2), 所以这个算法的总的复杂度是O(n * 2^(n /2))。

程序如下:

#include <iostream>
#include <utility> // for pair<>
#include <algorithm> // for std::sort
using namespace std;

typedef long long Int64;

const int MAX_N = 40 + 5;
const Int64 INF = 0x3FFFFFFFFFFFFFFF;
int n;
Int64 w[MAX_N], v[MAX_N];
Int64 W;

pair<Int64, Int64> ps[1 << (MAX_N /2)]; // (重量, 价值)

void solve() {
    // 枚举前半部分
    int n2 = n / 2;
    for(int i = 0; i < 1 << n2; ++i) { // n2 个物品的所有组合
        Int64 sw = 0, sv = 0;
        for(int j = 0; j < n2; ++j) {
            if(i >> j & 1) {
                sw += w[j];
                sv += v[j];
            }
        }
        ps[i] = make_pair(sw, sv);
    }

    // 去除多余的元素
    sort(ps, ps + (1 << n2));
    int m = 0;
    for(int i = 1; i <= 1 << (n - n2); ++i) {
        if(ps[m - 1].second < ps[i].second) {
            ps[m++] = ps[i];
        }
    }

    //枚举后半部分
    Int64 res = 0;
    for(int i = 0; i < 1 << (n - n2); ++i) { // n2 个物品的所有组合
        Int64 sw = 0, sv = 0;
        for(int j = 0; j < n2; ++j) {
            if(i >> j & 1) {
                sw += w[n2 + j];
                sv += v[n2 + j];
            }
        }
        if(sw <= W) {
            Int64 tv = (lower_bound(ps, ps + m, make_pair(W - sw, INF)) - 1)->second;
            res = max(res, sv + tv);
        }
    }
    printf("%I64d\n", res);
}
int main() {
    freopen("input.txt",  "r", stdin);
    freopen("output.txt","w", stdout);

    while(~scanf("%d%I64d", &n, &W)) {
        for(int i = 0; i < n; i++) {
            scanf("%I64d", &w[i]);
        }
        for(int i = 0; i < n; i++) {
            scanf("%I64d", &v[i]);
        }
        solve();
    }
    return 0;

}

输入:

4 5
2 1 3 2
3 2 4 2

输出:

7

技术分享

  

超大背包问题

标签:

原文地址:http://blog.csdn.net/a130737/article/details/44132877

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!