标签:
题目:
畅通工程 |
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 163 Accepted Submission(s): 132 |
Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? |
Input 测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说 3 3 1 2 1 2 2 1 这种输入也是合法的 当N为0时,输入结束,该用例不被处理。 |
Output 对每个测试用例,在1行里输出最少还需要建设的道路数目。 |
Sample Input 4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0 |
Sample Output 1 0 2 998 |
Source 浙大计算机研究生复试上机考试-2005年 |
Recommend JGShining |
题目分析:
并查集。所需要添加的边数=孤立点数-1.问题转化成使用并查集进行合并操作以后,还剩的孤立点数。
代码如下:
/* * c.cpp * * Created on: 2015年3月9日 * Author: Administrator */ #include <iostream> #include <cstdio> using namespace std; const int maxn = 1001; int father[maxn]; void init(){ int i; for(i = 1 ; i < maxn ; ++i){ father[i] = i; } } int find(int a){ if(a == father[a]){ return a; } return father[a] = find(father[a]); } void join(int a,int b){ int fa = find(a); int fb = find(b); if(fa != fb){ father[fa] = fb;//注意这里不能写成father[a] = b.否则会WA } } int main(){ int n,m; while(scanf("%d",&n)!=EOF,n){ scanf("%d",&m); init(); int i; for(i = 1 ; i <= m ; ++i){ int a,b; scanf("%d%d",&a,&b); join(a,b); } int cnt = 0; for(i = 1 ; i <= n ; ++i){//遍历所有点 if(father[i] == i){//求孤立点的个数 cnt++; } } printf("%d\n",cnt-1);//所需要件的边数就是孤立点数-1。 } return 0; }
(hdu step 6.1.3)畅通工程(求需要添加多少条边才能让n个点连通)
标签:
原文地址:http://blog.csdn.net/hjd_love_zzt/article/details/44173643