标签:
查找的基本概念
什么是查找?
查找是根据给定的某个值,在表中确定一个关键字的值等于给定值的记录或数据元素。
查找算法的分类
若在查找的同时对表记录做修改操作(如插入和删除),则相应的表称之为动态查找表;
否则,称之为静态查找表。
此外,如果查找的全过程都在内存中进行,称之为内查找;
反之,如果查找过程中需要访问外存,称之为外查找。
查找算法性能比较的标准
——平均查找长度ASL(Average Search Length)
由于查找算法的主要运算是关键字的比较过程,所以通常把查找过程中对关键字需要执行的平均比较长度(也称为平均比较次数)作为衡量一个查找算法效率优劣的比较标准。
选取查找算法的因素
(1) 使用什么数据存储结构(如线性表、树形表等)。
(2) 表中的次序,即对无序表还是有序表进行查找。
要点
它是一种最简单的查找算法,效率也很低下。
存储结构
没有存储结构要求,可以无序,也可以有序。
基本思想
若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
核心代码
算法分析
顺序查找算法最好的情况是,第一个记录即匹配关键字,则需要比较 1 次;
最坏的情况是,最后一个记录匹配关键字,则需要比较 N 次。
所以,顺序查找算法的平均查找长度为
ASL = (N + N-1 + ... + 2 + 1) / N = (N+1) / 2
顺序查找的平均时间复杂度为O(N)。
要点
存储结构
(1) 必须是顺序存储结构。
(2) 必须是有序的表。
基本思想
否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
核心代码
算法分析
二分查找的过程可看成一个二叉树。
把查找区间的中间位置视为树的根,左区间和右区间视为根的左子树和右子树。
由此得到的二叉树,称为二分查找的判定树或比较树。
由此可知,二分查找的平均查找长度实际上就是树的高度O(log2N)。
分块查找由于只要求索引表是有序的,对块内节点没有排序要求,因此特别适合于节点动态变化的情况。
存储结构
分块查找表是由“分块有序”的线性表和索引表两部分构成的。
所谓“分块有序”的线性表,是指:
假设要排序的表为R[0...N-1],将表均匀分成b块,前b-1块中记录个数为s=N/b,最后一块记录数小于等于s;
每一块中的关键字不一定有序,但前一块中的最大关键字必须小于后一块中的最小关键字。
注:这是使用分块查找的前提条件。
如上将表均匀分成b块后,抽取各块中的最大关键字和起始位置构成一个索引表IDX[0...b-1]。
由于表R是分块有序的,所以索引表是一个递增有序表。
下图就是一个分块查找表的存储结构示意图
基本思想
分块查找算法有两个处理步骤:
(1) 首先查找索引表
因为分块查找表是“分块有序”的,所以我们可以通过索引表来锁定关键字所在的区间。
又因为索引表是递增有序的,所以查找索引可以使用顺序查找或二分查找。
(2) 然后在已确定的块中进行顺序查找
因为块中不一定是有序的,所以只能使用顺序查找。
代码范例
运行结果
算法分析
因为分块查找实际上是两次查找过程之和。若以二分查找来确定块,显然它的查找效率介于顺序查找和二分查找之间。
(2) 从适用性而言,顺序查找无限制条件,二分查找仅适用于有序表,分块查找要求“分块有序”。
(3) 从存储结构而言,顺序查找和分块查找既可用于顺序表也可用于链表;而二分查找只适用于顺序表。
(4) 分块查找综合了顺序查找和二分查找的优点,既可以较为快速,也能使用动态变化的要求。
标签:
原文地址:http://www.cnblogs.com/jingmoxukong/p/4324179.html