标签:
题意:给出N组直线,每组2条直线,求出直线是否相交。如果共线则输出LINE,相交则输入点坐标,否则输出NONE.
分析:模板裸题,直接上模板。。。
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); const int N = 110; int sgn(double x) { if(fabs(x) < eps)return 0; if(x < 0)return -1; else return 1; } struct Point { double x,y; Point(){} Point(double _x,double _y) { x = _x;y = _y; } Point operator -(const Point &b)const { return Point(x - b.x,y - b.y); } //叉积 double operator ^(const Point &b)const { return x*b.y - y*b.x; } }; struct Line { Point s,e; Line(){} Line(Point _s,Point _e) { s = _s;e = _e; } //两直线相交求交点 //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交 //只有第一个值为2时,交点才有意义 pair<int,Point> operator &(const Line &b)const { Point res = s; if(sgn((s-e)^(b.s-b.e)) == 0) { if(sgn((s-b.e)^(b.s-b.e)) == 0) return make_pair(0,res);//重合 else return make_pair(1,res);//平行 } double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x += (e.x-s.x)*t; res.y += (e.y-s.y)*t; return make_pair(2,res); } }; Line seg[10]; int main() { int T; scanf("%d",&T); puts("INTERSECTING LINES OUTPUT"); while(T--) { for(int i=1;i<=2;i++) { double a,b,c,d; scanf("%lf%lf%lf%lf",&a,&b,&c,&d); seg[i]=Line(Point(a,b),Point(c,d)); } pair<int,Point> p=seg[1]&seg[2]; if(p.first==0)puts("LINE"); else if(p.first==1)puts("NONE"); else { printf("POINT %.2lf %.2lf\n",p.second.x,p.second.y); } } puts("END OF OUTPUT"); return 0; }
标签:
原文地址:http://www.cnblogs.com/lienus/p/4333352.html