码迷,mamicode.com
首页 > 其他好文 > 详细

295565656

时间:2014-06-04 16:42:35      阅读:214      评论:0      收藏:0      [点我收藏+]

标签:c   style   class   a   ext   color   

$\bf证明$  $(1)$由${f_n}$依测度收敛于$f(x)$知,对任何自然数$k$,存在自然数${n_k}\left( { > {n_{k - 1}}} \right)$,使得当$n \ge {n_k}$时,有m\left( {E\left( {\left| {{f_n} - f} \right| \ge \frac{1}{{{2^k}}}} \right)} \right) < \frac{1}{{{2^k}}}

m(E(|fbubuko.com,布布扣nbubuko.com,布布扣?f|1bubuko.com,布布扣2bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣))<1bubuko.com,布布扣2bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

记${E_k} = E\left( {\left| {{f_{{n_k}}} - f} \right| \ge \frac{1}{{{2^k}}}} \right)$,则$m\left( {{E_k}} \right) < \frac{1}{{{2^k}}}$,令

{F_k} = \bigcap\limits_{i = k}^\infty  {\left( {E\backslash {E_i}} \right)}

Fbubuko.com,布布扣kbubuko.com,布布扣=?bubuko.com,布布扣i=kbubuko.com,布布扣bubuko.com,布布扣 (E?Ebubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣
由于$E\backslash {E_i} = E\left( {\left| {{f_{{n_i}}} - f} \right| < \frac{1}{{{2^i}}}} \right)$,所以我们有{F_k} = E\left( {\left| {{f_{{n_i}}} - f} \right| < \frac{1}{{{2^i}}},i = k,k + 1, \cdots } \right)
Fbubuko.com,布布扣kbubuko.com,布布扣=E(bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣nbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?fbubuko.com,布布扣bubuko.com,布布扣<1bubuko.com,布布扣2bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,i=k,k+1,?)bubuko.com,布布扣

即函数列${f_{{n_i}}}\left( x \right)$在${F_k}$上一致收敛于$f(x)$,于是${f_{{n_i}}}\left( x \right)$在$F = \bigcup\limits_{k = 1}^\infty  {{F_k}} $上处处收敛于$f(x)$

$(2)$下面我们只需证明$m\left( {E\backslash F} \right) = 0$即可,由于E\backslash F = \bigcap\limits_{k = 1}^\infty  {\left( {E\backslash {F_k}} \right)}  = \bigcap\limits_{k = 1}^\infty  {\bigcup\limits_{i = k}^\infty  {{E_i}} }  = \mathop {\overline {\lim } }\limits_{i \to \infty } {E_i} \subset \bigcup\limits_{i = 1}^\infty  {{E_i}}

E?F=?bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣 (E?Fbubuko.com,布布扣kbubuko.com,布布扣) =?bubuko.com,布布扣k=1bubuko.com,布布扣bubuko.com,布布扣 ?bubuko.com,布布扣i=kbubuko.com,布布扣bubuko.com,布布扣 Ebubuko.com,布布扣ibubuko.com,布布扣 =limbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ibubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣??bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣 Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣
m\left( {\bigcup\limits_{i = 1}^\infty  {{E_i}} } \right) \le \sum\limits_{i = 1}^\infty  {m\left( {{E_i}} \right)}  \le \sum\limits_{i = 1}^\infty  {\frac{1}{{{2^i}}}}  = 1
所以我们有$m\left( {E\backslash F} \right) = 0$

$\bf注1:$由上限集与下限集的定义知,\bigcap\limits_{n = 1}^\infty  {{A_n}}  \subset \mathop {\underline {\lim } }\limits_{n \to \infty } {A_n} \subset \mathop {\overline {\lim } }\limits_{n \to \infty } {A_n} \subset \bigcup\limits_{n = 1}^\infty  {{A_n}}

 

 

295565656,布布扣,bubuko.com

295565656

标签:c   style   class   a   ext   color   

原文地址:http://www.cnblogs.com/ly758241/p/3764686.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!