码迷,mamicode.com
首页 > 其他好文 > 详细

softmax原理及Matlab实现

时间:2015-03-13 16:33:43      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:机器学习   softmax   matlab   代码   

一、softmax 

softmax模型的含义是假设后验概率P(y|x)服从多项式分布,y=1,2,3,4,..,k,即有k类,根据多项式分布(n=1,也可以称为目录分布)的定义:

技术分享

二、从广义线性模型中推导出softmax模型

技术分享
我们的目标是给定X,求出参数phi,需要建立参数phi对X的模型,下面给出模型的推导。
技术分享
技术分享
下面我们将后验概率写成指数函数族的形式,以得出

技术分享
技术分享

三、优化函数与梯度

现在我们已经建立了参数phi对X的模型,下面需要做的是估计参数theta的值,利用最大似然估计即可。
技术分享
下面求解梯度:
技术分享
技术分享

四、正则惩罚

为了使目标函数严格凸函数即存在唯一最小值,再加入一个权值惩罚项,得到新的目标函数与梯度:
技术分享
技术分享

五、matlab实验

实验数据用到了mnist数据库,用于识别10个手写数字。
%% CS294A/CS294W Softmax Exercise 

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  softmax exercise. You will need to write the softmax cost function 
%  in softmaxCost.m and the softmax prediction function in softmaxPred.m. 
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%  (However, you may be required to do so in later exercises)

%%======================================================================
%% STEP 0: Initialise constants and parameters
%
%  Here we define and initialise some constants which allow your code
%  to be used more generally on any arbitrary input. 
%  We also initialise some parameters used for tuning the model.

inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28)
numClasses = 10;     % Number of classes (MNIST images fall into 10 classes)

lambda = 1e-4; % Weight decay parameter

%%======================================================================
%% STEP 1: Load data
%
%  In this section, we load the input and output data.
%  For softmax regression on MNIST pixels, 
%  the input data is the images, and 
%  the output data is the labels.
%

% Change the filenames if you've saved the files under different names
% On some platforms, the files might be saved as 
% train-images.idx3-ubyte / train-labels.idx1-ubyte

images = loadMNISTImages('mnist/train-images-idx3-ubyte');
labels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');
labels(labels==0) = 10; % Remap 0 to 10


inputData = images;

% For debugging purposes, you may wish to reduce the size of the input data
% in order to speed up gradient checking. 
% Here, we create synthetic dataset using random data for testing

% DEBUG = true; % Set DEBUG to true when debugging.
% if DEBUG
%     inputSize = 8;
%     inputData = randn(8, 100);
%     labels = randi(10, 100, 1);
% end

% Randomly initialise theta
theta = 0.005 * randn(numClasses * inputSize, 1);

%%======================================================================
%% STEP 2: Implement softmaxCost
%
%  Implement softmaxCost in softmaxCost.m. 

[cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, inputData, labels);
                                     
%%======================================================================
%% STEP 3: Gradient checking
%
%  As with any learning algorithm, you should always check that your
%  gradients are correct before learning the parameters.
% 

% if DEBUG
%     numGrad = computeNumericalGradient( @(x) softmaxCost(x, numClasses, ...
%                                     inputSize, lambda, inputData, labels), theta);
% 
%     % Use this to visually compare the gradients side by side
%     disp([numGrad grad]); 
% 
%     % Compare numerically computed gradients with those computed analytically
%     diff = norm(numGrad-grad)/norm(numGrad+grad);
%     disp(diff); 
%     % The difference should be small. 
%     % In our implementation, these values are usually less than 1e-7.
% 
%     % When your gradients are correct, congratulations!
% end

%%======================================================================
%% STEP 4: Learning parameters
%
%  Once you have verified that your gradients are correct, 
%  you can start training your softmax regression code using softmaxTrain
%  (which uses minFunc).

options.maxIter = 100;
softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ...
                            inputData, labels, options);
                          
% Although we only use 100 iterations here to train a classifier for the 
% MNIST data set, in practice, training for more iterations is usually
% beneficial.

%%======================================================================
%% STEP 5: Testing
%
%  You should now test your model against the test images.
%  To do this, you will first need to write softmaxPredict
%  (in softmaxPredict.m), which should return predictions
%  given a softmax model and the input data.

images = loadMNISTImages('mnist/t10k-images-idx3-ubyte');
labels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte');
labels(labels==0) = 10; % Remap 0 to 10

inputData = images;

% You will have to implement softmaxPredict in softmaxPredict.m
[pred] = softmaxPredict(softmaxModel, inputData);

acc = mean(labels(:) == pred(:));
fprintf('Accuracy: %0.3f%%\n', acc * 100);

% Accuracy is the proportion of correctly classified images
% After 100 iterations, the results for our implementation were:
%
% Accuracy: 92.200%
%
% If your values are too low (accuracy less than 0.91), you should check 
% your code for errors, and make sure you are training on the 
% entire data set of 60000 28x28 training images 
% (unless you modified the loading code, this should be the case)


function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)

% numClasses - the number of classes 
% inputSize - the size N of the input vector
% lambda - weight decay parameter
% data - the N x M input matrix, where each column data(:, i) corresponds to
%        a single test set
% labels - an M x 1 matrix containing the labels corresponding for the input data
%

% Unroll the parameters from theta
theta = reshape(theta, numClasses, inputSize);

numCases = size(data, 2);

groundTruth = full(sparse(labels, 1:numCases, 1));
cost = 0;

thetagrad = zeros(numClasses, inputSize);

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost and gradient for softmax regression.
%                You need to compute thetagrad and cost.
%                The groundTruth matrix might come in handy.
[N,M]=size(data);
eta=bsxfun(@minus,theta*data,max(theta*data,[],1));
eta=exp(eta);
pij=bsxfun(@rdivide,eta,sum(eta));

cost=-1./M*sum(sum(groundTruth.*log(pij)))+lambda/2*sum(sum(theta.^2));

thetagrad=-1/M.*(groundTruth-pij)*data'+lambda.*thetagrad;
% ------------------------------------------------------------------
% Unroll the gradient matrices into a vector for minFunc
grad = [thetagrad(:)];
end

function [softmaxModel] = softmaxTrain(inputSize, numClasses, lambda, inputData, labels, options)
%softmaxTrain Train a softmax model with the given parameters on the given
% data. Returns softmaxOptTheta, a vector containing the trained parameters
% for the model.
%
% inputSize: the size of an input vector x^(i)
% numClasses: the number of classes 
% lambda: weight decay parameter
% inputData: an N by M matrix containing the input data, such that
%            inputData(:, c) is the cth input
% labels: M by 1 matrix containing the class labels for the
%            corresponding inputs. labels(c) is the class label for
%            the cth input
% options (optional): options
%   options.maxIter: number of iterations to train for

if ~exist('options', 'var')
    options = struct;
end

if ~isfield(options, 'maxIter')
    options.maxIter = 400;
end

% initialize parameters
theta = 0.005 * randn(numClasses * inputSize, 1);

% Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                          % function. Generally, for minFunc to work, you
                          % need a function pointer with two outputs: the
                          % function value and the gradient. In our problem,
                          % softmaxCost.m satisfies this.
minFuncOptions.display = 'on';

[softmaxOptTheta, cost] = minFunc( @(p) softmaxCost(p, ...
                                   numClasses, inputSize, lambda, ...
                                   inputData, labels), ...                                   
                              theta, options);

% Fold softmaxOptTheta into a nicer format
softmaxModel.optTheta = reshape(softmaxOptTheta, numClasses, inputSize);
softmaxModel.inputSize = inputSize;
softmaxModel.numClasses = numClasses;
                          
end                          

function [pred] = softmaxPredict(softmaxModel, data)

% softmaxModel - model trained using softmaxTrain
% data - the N x M input matrix, where each column data(:, i) corresponds to
%        a single test set
%
% Your code should produce the prediction matrix 
% pred, where pred(i) is argmax_c P(y(c) | x(i)).
 
% Unroll the parameters from theta
theta = softmaxModel.optTheta;  % this provides a numClasses x inputSize matrix
pred = zeros(1, size(data, 2));

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute pred using theta assuming that the labels start 
[prob,pred]=max(theta*data);
% ---------------------------------------------------------------------
end


to be continued....


softmax原理及Matlab实现

标签:机器学习   softmax   matlab   代码   

原文地址:http://blog.csdn.net/hqh45/article/details/44228715

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!