标签:
解法一:第一次看到这题目,想到最简单、最直觉的解法就是:遍历字符串,将第一个字符和最后一个交换,第二个和倒数第二个交换,依次循环,即可,于是有了第一个解法:
char* strrev1(const char* str) { int len = strlen(str); char* tmp = new char[len + 1]; strcpy(tmp,str);
for (int i = 0; i < len/2; ++i) { char c = tmp[i]; tmp[i] = tmp[len – i - 1]; tmp[len – i - 1] = c; }
return tmp; } |
这里是通过数组的下标方式访问字符串的字符,实际上用指针直接操作即可。解法二正是基于此,实现代码为:
char* strrev2(const char* str) { char* tmp = new char[strlen(str) + 1]; strcpy(tmp,str); char* ret = tmp;
char* p = tmp + strlen(str) - 1;
while (p > tmp) { char t = *tmp; *tmp = *p; *p = t;
--p; ++tmp; }
return ret; } |
显 然上面的两个解法中没有考虑时间和空间的优化,一个典型的优化策略就是两个字符交换的算法优化,我们可以完全不使用任何外部变量即完成两个字符(或者整 数)的交换,这也是一个很经典的面试题目。特别是一些嵌入式硬件相关编程中经常要考虑寄存器的使用,因此经常有不使用任何第三个寄存器即完成两个寄存器数 据的交换的题目。一般有两个解法,对应这里的解法三和解法四。
解法三的实现代码为:
char* strrev3(const char* str) { char* tmp = new char[strlen(str) + 1]; strcpy(tmp,str); char* ret = tmp;
char* p = tmp + strlen(str) - 1;
while (p > tmp) { *p ^= *tmp; *tmp ^= *p; *p ^= *tmp;
--p; ++tmp; }
return ret; } |
解法四的实现代码为:
char* strrev4(const char* str) { char* tmp = new char[strlen(str) + 1]; strcpy(tmp,str); char* ret = tmp;
char* p = tmp + strlen(str) - 1;
while (p > tmp) { *p = *p + *tmp; *tmp = *p - *tmp; *p = *p - *tmp;
--p; ++tmp; }
return ret; } |
实际上我们还可以通过递归的思想来解决这个问题,思想很简单:每次交换首尾两个字符,中间部分则又变为和原来字符串同样的问题,因此可以通过递归的思想来解决这个问题,对应解法五的实现代码为:
char* strrev5(/*const */char* str,int len) { if (len <= 1) return str;
char t = *str; *str = *(str + len -1); *(str + len -1) = t;
return (strrev5(str + 1,len - 2) - 1); } |
以下给出一个测试程序:
int main(int argc,char* argv[]) { char* str = "hello"; P(str);
char* str2 = strrev1(str); P(str2);
char* str3 = strrev2(str2); P(str3);
char* str4 = strrev3(str3); P(str4);
char* str5 = strrev4(str4); P(str5);
char* str6 = strrev5(str5,strlen(str5)); P(str6);
return 0; } |
你就可以看到字符串"hello"和"olleh"交替输出了。
说明:1)这里解法中没有认真考虑输入字符串的合法性和特殊长度(如NULL、一个字符等)字符串的处理;2)前4个算法不改变输入字符串的值,解法五修改了输入字符串。
标签:
原文地址:http://www.cnblogs.com/talhon/p/4335586.html