标签:
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
0 9 999999999 1000000000 -1
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define LL __int64 #define mod 10000 struct matrix { LL mat[2][2]; }; matrix multiply(matrix a,matrix b) { matrix c; memset(c.mat,0,sizeof(c.mat)); for(int i=0;i<2;i++) { for(int j=0;j<2;j++) { if(a.mat[i][j]==0)continue; for(int k=0;k<2;k++) { if(b.mat[j][k]==0)continue; c.mat[i][k]+=a.mat[i][j]*b.mat[j][k]%mod; c.mat[i][k]%=mod; } } } return c; } matrix quicklymod(matrix a,LL n) { matrix res; memset(res.mat,0,sizeof(res.mat)); for(int i=0;i<2;i++) res.mat[i][i]=1; while(n) { if(n&1) res=multiply(a,res); a=multiply(a,a); n>>=1; } return res; } int main() { LL n; while(scanf("%I64d",&n)!=EOF) { if(n==-1)break; matrix ans; ans.mat[0][0]=1; ans.mat[0][1]=1; ans.mat[1][0]=1; ans.mat[1][1]=0; if(n==0) { printf("0\n"); continue; } /* else if(n==1) { printf("1\n"); continue; }*/ else ans=quicklymod(ans,n); /* for(int i=0; i<2; i++) { for(int j=0; j<2; j++) printf("%I64d\t",ans.mat[i][j]); printf("\n"); } printf("\n"); */ printf("%I64d\n",ans.mat[1][0]); } return 0; }
标签:
原文地址:http://www.cnblogs.com/yuyixingkong/p/4335840.html