标签:矩阵
Problem Description
A sequence Sn is defined as:
Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
You, a top coder, say: So easy!
Input
There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
Output
For each the case, output an integer Sn.
Sample Input
2 3 1 2013 2 3 2 2013 2 2 1 2013
Sample Output
4 14 4
Source
2013 ACM-ICPC长沙赛区全国邀请赛——题目重现
Recommend
zhoujiaqi2010 | We have carefully selected several similar problems for you: 5185 5184 5181 5180 5177
(a+sqrt(b))^n最后的形式一定形如
X+Y * sqrt(b)
n范围很大,需要用矩阵来加速
推出转移矩阵为
a 1
b a
(a+sqrt(b))^n = X+Y * sqrt(b)
(a-sqrt(b))^n = X-Y * sqrt(b)
a - 1< sqrt(b) < a
所以z = (a-sqrt(b))^n 大于0 小于1
设ans = (a+sqrt(b))^n
ans+z = 2 * X
2 * X - 1 < ans = 2 * X - z < 2 * X
那么向上取整就是2 * X
/*************************************************************************
> File Name: hdu4565.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年03月14日 星期六 11时01分21秒
************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
LL mod;
class MARTIX
{
public:
LL mat[5][5];
MARTIX();
MARTIX operator * (const MARTIX &b)const;
MARTIX& operator = (const MARTIX &b);
};
MARTIX::MARTIX()
{
memset (mat, 0, sizeof(mat));
}
MARTIX MARTIX :: operator * (const MARTIX &b)const
{
MARTIX ret;
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
for (int k = 0; k < 2; ++k)
{
ret.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
ret.mat[i][j] %= mod;
}
}
}
return ret;
}
MARTIX& MARTIX :: operator = (const MARTIX &b)
{
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
this -> mat[i][j] = b.mat[i][j];
}
}
return *this;
}
MARTIX fastpow(MARTIX ret, LL n)
{
MARTIX ans;
for (int i = 0; i < 2; ++i)
{
ans.mat[i][i] = 1;
}
while (n)
{
if (n & 1)
{
ans = ans * ret;
}
ret = ret * ret;
n >>= 1;
}
return ans;
}
void Debug(MARTIX A)
{
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
printf("%lld ", A.mat[i][j]);
}
printf("\n");
}
}
int main ()
{
LL a, b, n;
while (~scanf("%lld%lld%lld%lld", &a, &b, &n, &mod))
{
MARTIX A;
A.mat[0][0] = a;
A.mat[0][1] = 1;
A.mat[1][0] = b;
A.mat[1][1] = a;
A = fastpow(A, n - 1);
MARTIX F;
F.mat[0][0] = a;
F.mat[0][1] = 1;
F = F * A;
printf("%lld\n", (2 * F.mat[0][0]) % mod);
}
return 0;
}
标签:矩阵
原文地址:http://blog.csdn.net/guard_mine/article/details/44258023