码迷,mamicode.com
首页 > 其他好文 > 详细

博弈论学习笔记(四)足球比赛与商业合作之最佳对策

时间:2015-03-15 10:45:43      阅读:125      评论:0      收藏:0      [点我收藏+]

标签:

点球案例

在一次足球比赛罚点球时,罚球队员可以选择L,M,R三种不同射门路径;门将可以选择扑向左路或者右路(原则上讲他也可以守在右路)。

  l r
L 4,-4 9,-9
M 6,-6 6,-6
R 9,-9 4,-4
该表表示各自的收益,其中,Lr对应的9表示当射手射向左路而门将扑向右路时,射手有90%的概率进球,-9表示门将有90%的概率丢球(10%概率射偏)。其他收益以此类推。
我们假设门将扑向右路的概率是Pr,那么门将扑向左路的概率是Pl=1-Pr。
那么,射手
	选择左路的预期收益为 EU1(L,Pr) = Pl*U1(L,l) + Pr*U1(L,l) = (1-Pr)*4 + Pr*9 = 4 + 5*Pr;
	选择中路的预期收益为 EU1(M,Pr) = Pl*U1(L,l) + Pr*U1(L,l) = (1-Pr)*6 + Pr*6 = 6;
	选择右路的预期收益为 EU1(R,Pr) = Pl*U1(L,l) + Pr*U1(L,l) = (1-Pr)*9 + Pr*4 = 9 - 5*Pr;

技术分享


结论:从中路射门都不是一个最佳策略;不要选择在任何信念下都不是最佳策略的策略。

定义:参与者i的对策si是对手的策略s-i的最佳对策,当且仅当对于参与者i的所有其他策略si‘,U1(si,s-i)>=U1(si‘,s-i)

商业合作案例

两个参与者都是公司的股东,他们都持有公司的股份并且平分利润。
si表示第i个股东为公司付出的精力。i=1,2。
总收益为4*(s1 + s2 + B*s1*s2)
所以对于每个参与者,他们能够获得的收益是1/2*4*(s1 + s2 + B*s1*s2) = 2*(s1 + s2 + B*s1*s2)
我们现在来考虑参与者1,他的付出是s1^2,s所以他的净收益为:2*(s1 + s2 + B*s1*s2) - s1^2
为了让收益最大,对s1求导得出收益导数为0的方程:s1 = 1 + B*s2
同理,对于s2,s2 = 1 + B*s1
我们这里设B=1/4。S=[1,4]。

技术分享

这里看一看到,因为s1的范围只在1和2之间,所以[0,1]和[3,4]是s1的劣势策略;
同理,[0,1]和[3,4]是s2的劣势策略。
所以剔除之后剩下了s1∈[1,2],s2∈[1,2]这个区间,我们将其放大四倍,发现了和原来一样的图。
然后我们就可以接待进行剔除了。
最后得到的点就是方程组:
	s1 = 1 + B*s2
s2 = 1 + B*s1
的解。 得出: s1 = s2 = 1/(B-1) (1/(B-1), 1/(B-1))这个点称为纳什均衡 Nash Equilibrium

这意味着博弈双方彼此都不想偏离纳什均衡点。在纳什均衡点处,双方都采取彼此的最佳对策。

博弈论学习笔记(四)足球比赛与商业合作之最佳对策

标签:

原文地址:http://www.cnblogs.com/junealan/p/4338855.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!