码迷,mamicode.com
首页 > 其他好文 > 详细

5959262652

时间:2014-06-07 00:22:29      阅读:244      评论:0      收藏:0      [点我收藏+]

标签:c   style   class   a   ext   color   

$\bf证明$  由于$f_n$几乎处处收敛于$f$,且$\displaystyle|{f_n}|\mathop { \le} \limits_{a.e.} F$,则令$n \to \infty $,有$\displaystyle|{f}|\mathop { \le} \limits_{a.e.} F$,从而由$F$可积得到$f$是可积的

  $(1)$首先考虑$m\left( E \right) < \infty $的情况

由于$F$可积,则由积分的全连续性知,对任给的$\varepsilon  > 0$,存在$\delta  > 0$,使得对任意可测集$e \subset E$满足$m\left( e \right) < \delta $时,有

bubuko.com,布布扣ebubuko.com,布布扣F(x)dx <εbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

又由于$f_n$几乎处处收敛于$f$,则由$\bf{Egoroff定理}$知,对上述的$\delta  > 0$,存在可测集${E_\delta } \subset E$,使得

m(E?Ebubuko.com,布布扣δbubuko.com,布布扣)<δbubuko.com,布布扣
且$f_n$在${E_\delta }$上一致收敛于$f$,即对任给的$\varepsilon  > 0$,存在$N$,使得当$n \ge N$时,对任意$x \in {E_\delta }$,有
|fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)|<εbubuko.com,布布扣2m(E)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

从而可知

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣nbubuko.com,布布扣(x)dx?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣|fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)|dxbubuko.com,布布扣=bubuko.com,布布扣E?Ebubuko.com,布布扣δbubuko.com,布布扣bubuko.com,布布扣|fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)|dx+bubuko.com,布布扣Ebubuko.com,布布扣δbubuko.com,布布扣bubuko.com,布布扣|fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)|dxbubuko.com,布布扣<bubuko.com,布布扣E?Ebubuko.com,布布扣δbubuko.com,布布扣bubuko.com,布布扣2F(x)dx+εbubuko.com,布布扣2m(E)bubuko.com,布布扣bubuko.com,布布扣?m(E)<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣+εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣=ε bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

  $(2)$其次考虑一般的$E$的情况

设$\left\{ {{E_n}} \right\}$是$E$的测度有限的单调覆盖,则由$F$可积的定义知

limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[F]bubuko.com,布布扣nbubuko.com,布布扣(x)dx =bubuko.com,布布扣Ebubuko.com,布布扣F(x)dxbubuko.com,布布扣
即对任给的$\varepsilon  > 0$,存在$N$,使得当$n \ge N$时,有
0bubuko.com,布布扣Ebubuko.com,布布扣F(x)dx ?bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[F]bubuko.com,布布扣nbubuko.com,布布扣(x)dx <εbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
于是当$n \ge N$时,我们有

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣E?Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣E?Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣2F(x)dxbubuko.com,布布扣=2(bubuko.com,布布扣Ebubuko.com,布布扣F(x)dx?bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣F(x)dx)bubuko.com,布布扣2(bubuko.com,布布扣Ebubuko.com,布布扣F(x)dx?bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[F]bubuko.com,布布扣nbubuko.com,布布扣(x)dx)<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
又对于测度有限的${E_n}$,由$(1)$可知,当$n \ge N$时,有
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
所以对任给的$\varepsilon  > 0$,存在$N$,使得当$n \ge N$时,有

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣[fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣E?Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[fbubuko.com,布布扣nbubuko.com,布布扣(x)?f(x)]dxbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣+εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣=εbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

$\bf注1:$$\bf(引理)$设$f$是$E$上的可积函数,$g$是$E$上的可测函数,若$\left| g \right| \le f$,则$g$也是可积的

方法一

$\bf注2:$$\bf(积分的全连续性)$设$f$是$E$上的可积函数,则对任给的$\varepsilon  > 0$,存在$\delta  > 0$,使得对任意可测集$e \subset E$满足$m\left( e \right) < \delta $时,有\[\int_e {\left| {f\left( x \right)} \right|dx}  < \frac{\varepsilon }{4}\]

方法一

$\bf注3:$

 

 

 

5959262652,布布扣,bubuko.com

5959262652

标签:c   style   class   a   ext   color   

原文地址:http://www.cnblogs.com/ly758241/p/3765358.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!