标签:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3615 | Accepted: 1874 |
Description
We give the following inductive definition of a “regular brackets” sequence:
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<string> #include<algorithm> using namespace std; char s[105]; int maxx,dp[105][105]; int main() { while(scanf("%s",s)!=EOF) { if(strcmp(s,"end")==0) break; memset(dp,0,sizeof(dp)); maxx=0; int len=strlen(s); for(int i=0;i<len;i++) { for(int j=0,k=i;k<len;j++,k++) { if((s[j]==‘(‘&&s[k]==‘)‘||(s[j]==‘[‘&&s[k]==‘]‘))) dp[j][k]=dp[j+1][k-1]+2; for(int t=j+1;t<k;t++) { if(dp[j][t]+dp[t][k]>dp[j][k]) dp[j][k]=dp[j][t]+dp[t][k]; } if(dp[j][k]>maxx) maxx=dp[j][k]; } } printf("%d\n",maxx); } return 0; }
标签:
原文地址:http://www.cnblogs.com/a972290869/p/4342626.html