码迷,mamicode.com
首页 > 其他好文 > 详细

leetcode题解||Median of Two Sorted Arrays问题

时间:2015-03-16 21:26:18      阅读:162      评论:0      收藏:0      [点我收藏+]

标签:递归算法   合并排序   分治   第k大数字   

problem:

There are two sorted arrays A and B of size m and n respectively. 
Find the median of the two sorted arrays. 
The overall run time complexity should be O(log (m+n)).

thinking:

(1)求中位数,就是求已序数列的中间位置对应的数字,分奇偶。两个已序数组求中位数,就是求合并后的中位数。

(2)采用merge sort合并排序的方法求中位数,很直观,但时间复杂度为O(m+n),不符合本题要求。

(3)采用分治的策略,时间复杂度满足O(m+n)。

参考:http://blog.csdn.net/zxzxy1988/article/details/8587244

该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

当A[k/2-1]>B[k/2-1]时存在类似的结论。

当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

如果A或者B为空,则直接返回B[k-1]或者A[k-1];
如果k为1,我们只需要返回A[0]和B[0]中的较小值;
如果A[k/2-1]=B[k/2-1],返回其中一个;

code:

分治策略寻找第K、k-pa、k-pb....大的数字,边界条件确定递归调用返回有效解。

double findKth(int a[], int m, int b[], int n, int k)  
{  
    //always assume that m is equal or smaller than n  
    if (m > n)  
        return findKth(b, n, a, m, k);  
    if (m == 0)  
        return b[k - 1];  
    if (k == 1)  
        return min(a[0], b[0]);  
    //divide k into two parts  
    int pa = min(k / 2, m), pb = k - pa;  
    if (a[pa - 1] < b[pb - 1])  
        return findKth(a + pa, m - pa, b, n, k - pa);  
    else if (a[pa - 1] > b[pb - 1])  
        return findKth(a, m, b + pb, n - pb, k - pb);  
    else  
        return a[pa - 1];  
}  
  
class Solution  
{  
public:  
    double findMedianSortedArrays(int A[], int m, int B[], int n)  
    {  
        int total = m + n;  
        if (total & 0x1)  
            return findKth(A, m, B, n, total / 2 + 1);  
        else  
            return (findKth(A, m, B, n, total / 2)  
                    + findKth(A, m, B, n, total / 2 + 1)) / 2;  
    }  
};  

分治递归算法简洁清楚,边界条件完备,时间复杂度为O(log(m+n))

leetcode题解||Median of Two Sorted Arrays问题

标签:递归算法   合并排序   分治   第k大数字   

原文地址:http://blog.csdn.net/hustyangju/article/details/44309083

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!