标签:
散仙在上篇文章中,介绍了关于ElasticSearch基本的增删改查的基本粒子,本篇呢,我们来学下稍微高级一点的知识:
(1)如何在ElasticSearch中批量提交索引 ?
(2)如何使用高级查询(包括,检索,排序,过滤,分页) ?
(3)如何组合多个查询 ?
(4)如何使用翻页深度查询 ?
(5)如何使用基本的聚合查询 ?
(一)首先,我们思考下,为什么要使用批量添加,这个毫无疑问,因为效率问题,举个在生活中的例子,假如我们有50个人,要去美国旅游,不使用批处理的方式是,给每一个人派一架飞机送到美国,那么这就需要50次飞机的来回往来,假如使用了批处理,现在的情况就是一个飞机坐50个人,只需一次即可把所有人都送到美国,效率可想而知,生活也有很多实际的例子,大家可以自己想想。
在原生的lucene中,以及solr中,这个批处理方式,实质是控制commit的时机,比如多少个提交一次,或者超过ranbuffersize的大小后自动提交,es封装了lucene的api提供bulk的方式来批量添加,原理也是,聚集一定的数量doc,然后发送一次添加请求。
(二)只要我们使用了全文检索,我们的业务就会有各种各样的api操作,包括,任意维度的字段查询,过滤掉某些无效的信息,然后根据某个字段排序,再取topN的结果集返回,使用数据库的小伙伴们,相信大家都不陌生,在es中,这些操作都是支持的,而且还非常高效,它能满足我们大部分的需求
(三)在es中,我们可以查询多个index,以及多个type,这一点是非常灵活地,我们,我们可以一次组装两个毫无关系的查询,发送到es服务端进行检索,然后获取结果。
(四)es中,通过了scorll的方式,支持深度分页查询,在数据库里,我们使用的是一个cursor游标来记录读取的偏移量,同样的在es中也支持,这样的查询方式,它通过一个scrollid记录了上一次查询的状态,能轻而易举的实现深度翻页,本质上是对了Lucene的SearchAfter的封装。
(五)es中,也提供了对聚合函数的支持,比如一些max,min,avg,count,sum等支持,除此之外还支持group,facet等操作,这些功能,在电商中应用非常广泛,基于lucene的solr和es都有很好的支持。
下面截图看下散仙的测试数据值:
源码demo如下:
import java.util.Date;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.lucene.index.Terms;
import org.elasticsearch.action.bulk.BulkRequestBuilder;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.search.MultiSearchResponse;
import org.elasticsearch.action.search.SearchRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchType;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentFactory;
import org.elasticsearch.index.query.FilterBuilders;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.QueryStringQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.filters.InternalFilters.Bucket;
import org.elasticsearch.search.sort.SortOrder;
/**
* @author 三劫散仙
* 搜索技术交流群:324714439
* 一个关于elasticsearch批量提交
* 和search query的的例子
* **/
public class ElasticSearchDao {
//es的客户端实例
Client client=null;
{
//连接单台机器,注意ip和端口号,不能写错
client=new TransportClient().
addTransportAddress(new InetSocketTransportAddress("192.168.46.16", 9300));
}
public static void main(String[] args)throws Exception {
ElasticSearchDao es=new ElasticSearchDao();
//es.indexdata();//索引数据
//es.queryComplex();
es.querySimple();
//es.scorllQuery();
//es.mutilCombineQuery();
//es.aggregationQuery();
}
/**组合分组查询*/
public void aggregationQuery()throws Exception{
SearchResponse sr = client.prepareSearch()
.setQuery(QueryBuilders.matchAllQuery())
.addAggregation(
AggregationBuilders.terms("1").field("type")
)
// .addAggregation(
// AggregationBuilders.dateHistogram("agg2")
// .field("birth")
// .interval(DateHistogram.Interval.YEAR)
// )
.execute().actionGet();
// Get your facet results
org.elasticsearch.search.aggregations.bucket.terms.Terms a = sr.getAggregations().get("1");
for(org.elasticsearch.search.aggregations.bucket.terms.Terms.Bucket bk:a.getBuckets()){
System.out.println("类型: "+bk.getKey()+" 分组统计数量 "+bk.getDocCount()+" ");
}
System.out.println("聚合数量:"+a.getBuckets().size());
//DateHistogram agg2 = sr.getAggregations().get("agg2");
//结果:
// 类型: 1 分组数量 2
// 类型: 2 分组数量 1
// 类型: 3 分组数量 1
// 聚合数量:3
}
/**多个不一样的请求组装*/
public void mutilCombineQuery(){
//查询请求1
SearchRequestBuilder srb1 =client.prepareSearch().setQuery(QueryBuilders.queryString("eng").field("address")).setSize(1);
//查询请求2//matchQuery
SearchRequestBuilder srb2 = client.prepareSearch().setQuery(QueryBuilders.matchQuery("title", "标题")).setSize(1);
//组装查询
MultiSearchResponse sr = client.prepareMultiSearch().add(srb1).add(srb2).execute().actionGet();
// You will get all individual responses from MultiSearchResponse#getResponses()
long nbHits = 0;
for (MultiSearchResponse.Item item : sr.getResponses()) {
SearchResponse response = item.getResponse();
for(SearchHit hits:response.getHits().getHits()){
String sourceAsString = hits.sourceAsString();//以字符串方式打印
System.out.println(sourceAsString);
}
nbHits += response.getHits().getTotalHits();
}
System.out.println("命中数据量:"+nbHits);
//输出:
// {"title":"我是标题","price":25.65,"type":1,"status":true,"address":"血落星域风阳星","createDate":"2015-03-16T09:56:20.440Z"}
// 命中数据量:2
client.close();
}
/**
* 翻页查询
* */
public void scorllQuery()throws Exception{
QueryStringQueryBuilder queryString = QueryBuilders.queryString("标题").field("title");
//TermQueryBuilder qb=QueryBuilders.termQuery("title", "我是标题");
SearchResponse scrollResp = client.prepareSearch("collection1")
.setSearchType(SearchType.SCAN)
.setScroll(new TimeValue(60000))
.setQuery(queryString)
.setSize(100).execute().actionGet(); //100 hits per shard will be returned for each scroll
while (true) {
for (SearchHit hit : scrollResp.getHits().getHits()) {
//Handle the hit...
String sourceAsString = hit.sourceAsString();//以字符串方式打印
System.out.println(sourceAsString);
}
//通过scrollid来实现深度翻页
scrollResp = client.prepareSearchScroll(scrollResp.getScrollId()).setScroll(new TimeValue(600000)).execute().actionGet();
//Break condition: No hits are returned
if (scrollResp.getHits().getHits().length == 0) {
break;
}
}
//输出
// {"title":"我是标题","price":25.65,"type":1,"status":true,"address":"血落星域风阳星","createDate":"2015-03-16T09:56:20.440Z"}
// {"title":"标题","price":251.65,"type":1,"status":true,"address":"美国东部","createDate":"2015-03-16T10:33:58.743Z"}
client.close();
}
/**简单查询*/
public void querySimple()throws Exception{
SearchResponse sp = client.prepareSearch("collection1").execute().actionGet();
for(SearchHit hits:sp.getHits().getHits()){
String sourceAsString = hits.sourceAsString();//以字符串方式打印
System.out.println(sourceAsString);
}
//结果
// {"title":"我是标题","price":25.65,"type":1,"status":true,"address":"血落星域风阳星","createDate":"2015-03-16T09:56:20.440Z"}
// {"title":"中国","price":205.65,"type":2,"status":true,"address":"河南洛阳","createDate":"2015-03-16T10:33:58.740Z"}
// {"title":"标题","price":251.65,"type":1,"status":true,"address":"美国东部","createDate":"2015-03-16T10:33:58.743Z"}
// {"title":"elasticsearch是一个搜索引擎","price":25.65,"type":3,"status":true,"address":"china","createDate":"2015-03-16T10:33:58.743Z"}
}
/**组合查询**/
public void queryComplex()throws Exception{
SearchResponse sp=client.prepareSearch("collection1")//检索的目录
.setTypes("core1")//检索的索引
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)//Query type
.setQuery(QueryBuilders.termQuery("type", "1"))//查询--Query
.setPostFilter(FilterBuilders.rangeFilter("price").from(10).to(550.23))//过滤 --Filter
.addSort("price",SortOrder.DESC) //排序 -- sort
.setFrom(0).setSize(20).setExplain(true)//topN方式
.execute().actionGet();//执行
System.out.println("本次查询命中条数: "+sp.getHits().getTotalHits());
for(SearchHit hits:sp.getHits().getHits()){
//String sourceAsString = hits.sourceAsString();//以字符串方式打印
//System.out.println(sourceAsString);
Map<String, Object> sourceAsMap = hits.sourceAsMap();
for(Entry<String, Object> k:sourceAsMap.entrySet()){
System.out.println("name: "+k.getKey()+" value: "+k.getValue());
}
System.out.println("=============================================");
}
//结果
// 本次查询命中条数: 2
// name: title value: 标题
// name: price value: 251.65
// name: address value: 美国东部
// name: status value: true
// name: createDate value: 2015-03-16T10:33:58.743Z
// name: type value: 1
// =============================================
// name: title value: 我是标题
// name: price value: 25.65
// name: address value: 血落星域风阳星
// name: status value: true
// name: createDate value: 2015-03-16T09:56:20.440Z
// name: type value: 1
// =============================================
client.close();
}
/**索引数据*/
public void indexdata()throws Exception{
BulkRequestBuilder bulk=client.prepareBulk();
XContentBuilder doc=XContentFactory.jsonBuilder()
.startObject()
.field("title","中国")
.field("price",205.65)
.field("type",2)
.field("status",true)
.field("address", "河南洛阳")
.field("createDate", new Date()).endObject();
//collection为索引库名,类似一个数据库,索引名为core,类似一个表
// client.prepareIndex("collection1", "core1").setSource(doc).execute().actionGet();
//批处理添加
bulk.add(client.prepareIndex("collection1", "core1").setSource(doc));
doc=XContentFactory.jsonBuilder()
.startObject()
.field("title","标题")
.field("price",251.65)
.field("type",1)
.field("status",true)
.field("address", "美国东部")
.field("createDate", new Date()).endObject();
//collection为索引库名,类似一个数据库,索引名为core,类似一个表
// client.prepareIndex("collection1", "core1").setSource(doc).execute().actionGet();
//批处理添加
bulk.add(client.prepareIndex("collection1", "core1").setSource(doc));
doc=XContentFactory.jsonBuilder()
.startObject()
.field("title","elasticsearch是一个搜索引擎")
.field("price",25.65)
.field("type",3)
.field("status",true)
.field("address", "china")
.field("createDate", new Date()).endObject();
//collection为索引库名,类似一个数据库,索引名为core,类似一个表
//client.prepareIndex("collection1", "core1").setSource(doc).execute().actionGet();
//批处理添加
bulk.add(client.prepareIndex("collection1", "core1").setSource(doc));
//发一次请求,提交所有数据
BulkResponse bulkResponse = bulk.execute().actionGet();
if (!bulkResponse.hasFailures()) {
System.out.println("创建索引success!");
} else {
System.out.println("创建索引异常:"+bulkResponse.buildFailureMessage());
}
client.close();//释放资源
// System.out.println("索引成功!");
}
}
标签:
原文地址:http://my.oschina.net/u/1027043/blog/387819