标签:
题目链接:
http://poj.org/problem?id=2417
题目大意:
已知整数P、B、N满足公式B^i = N(mod P),求i的值是多少。
思路:
典型的解高次同余方程A^x = B(mod C),直接套模板解决。注意输入顺序:C A B
AC代码:
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #define LL __int64 using namespace std; const int MAXN = 65535; struct HASH { int a; int b; int next; }Hash[MAXN*2]; int flag[MAXN+66]; int top,idx; void ins(int a,int b) { int k = b & MAXN; if(flag[k] != idx) { flag[k] = idx; Hash[k].next = -1; Hash[k].a = a; Hash[k].b = b; return; } while(Hash[k].next != -1) { if(Hash[k].b == b) return; k = Hash[k].next; } Hash[k].next = ++top; Hash[top].next = -1; Hash[top].a = a; Hash[top].b = b; } int Find(int b) { int k = b & MAXN; if(flag[k] != idx) return -1; while(k != -1) { if(Hash[k].b == b) return Hash[k].a; k = Hash[k].next; } return -1; } int GCD(int a,int b) { if(b == 0) return a; return GCD(b,a%b); } int ExGCD(int a,int b,int &x,int &y) { int temp,ret; if(!b) { x = 1; y = 0; return a; } ret = ExGCD(b,a%b,x,y); temp = x; x = y; y = temp - a/b*y; return ret; } int Inval(int a,int b,int n) { int x,y,e; ExGCD(a,n,x,y); e = (LL)x*b%n; return e < 0 ? e + n : e; } int PowMod(LL a,int b,int c) { LL ret = 1%c; a %= c; while(b) { if(b&1) ret = ret*a%c; a = a*a%c; b >>= 1; } return ret; } int BabyStep(int A,int B,int C) { top = MAXN; ++idx; LL buf = 1%C,D = buf,K; int d = 0,temp,i; for(i = 0; i <= 100; buf = buf*A%C,++i) { if(buf == B) return i; } while((temp = GCD(A,C)) != 1) { if(B % temp) return -1; ++d; C /= temp; B /= temp; D = D*A/temp%C; } int M = (int)ceil(sqrt((double)C)); for(buf = 1%C,i = 0; i <= M; buf = buf*A%C,++i) ins(i,buf); for(i = 0,K = PowMod((LL)A,M,C); i <= M; D = D*K%C,++i) { temp = Inval((int)D,B,C); int w; if(temp >= 0 && (w = Find(temp)) != -1) return i * M + w + d; } return -1; } int main() { int A,B,C; while(~scanf("%d%d%d",&C,&A,&B)) { B %= C; int temp = BabyStep(A,B,C); if(temp < 0) printf("no solution\n"); else printf("%d\n",temp); } return 0; }
POJ2417 Discrete Logging【高次同余方程】
标签:
原文地址:http://blog.csdn.net/lianai911/article/details/44407023