标签:uva
如何快速求取一段区间的平均值 用前缀的思想来看 非常简单
但是 本题题意要求的是 大于等于一段长度的区间的平均值的最大值 而且给出的数据范围很大 O(n*L)的直白比较算法 用于解决此问题不合适
这种情况下 可以考虑用斜率来表示平均值 然后通过对斜率的讨论和比较斜率来找出最大平均值
我感觉是维护一个从当前点往前的最大斜率——去除上凸点(它和当前点的连线肯定不能是最大斜率)
code(别人的orz...)
#include <stack> #include <cstdio> #include <list> #include <cassert> #include <set> #include <iostream> #include <string> #include <vector> #include <queue> #include <functional> #include <cstring> #include <algorithm> #include <cctype> #include <string> #include <map> #include <cmath> using namespace std; #define LL long long #define ULL unsigned long long #define SZ(x) (int)x.size() #define Lowbit(x) ((x) & (-x)) #define MP(a, b) make_pair(a, b) #define MS(arr, num) memset(arr, num, sizeof(arr)) #define PB push_back #define X first #define Y second #define ROP freopen("input.txt", "r", stdin); #define MID(a, b) (a + ((b - a) >> 1)) #define LC rt << 1, l, mid #define RC rt << 1|1, mid + 1, r #define LRT rt << 1 #define RRT rt << 1|1 const double PI = acos(-1.0); const int INF = 0x3f3f3f3f; const double eps = 1e-8; const int MAXN = 1e5 + 10; const int MOD = 1e9 + 7; const int dir[][2] = { {-1, 0}, {0, -1}, { 1, 0 }, { 0, 1 } }; int cases = 0; typedef pair<int, int> pii; int Q[MAXN], arr[MAXN]; char str[MAXN]; int Check(int x1, int x2, int x3, int x4) { return (arr[x2] - arr[x1-1]) * (x4-x3+1) - (arr[x4]-arr[x3-1])*(x2-x1+1); } int main() { //ROP; int T; scanf("%d", &T); while (T--) { int len, L; scanf("%d%d", &len, &L); scanf("%s", str+1); for (int i = 1; i <= len; i++) arr[i] = arr[i-1] + str[i] - '0'; int head = 0, tail = 0; pii ans = MP(1, L); for (int i = L; i <= len; i++) { int j = i-L; while (head+1 < tail && Check(Q[tail-2], j, Q[tail-1], j) >= 0) tail--; Q[tail++] = j+1; while (head+1 < tail && Check(Q[head], i, Q[head+1], i) <= 0) head++; int tmp = Check(Q[head], i, ans.X, ans.Y); if (tmp > 0 || (tmp == 0 && i - Q[head] < ans.Y - ans.X)) ans.X = Q[head], ans.Y = i; } printf("%d %d\n", ans.X, ans.Y); } return 0; }
标签:uva
原文地址:http://blog.csdn.net/u013382399/article/details/44411755