标签:
Given the value of a+b and ab you will have to find the value of an+bn
The input file contains several lines of inputs. Each line except the last line contains 3 non-negative integers p, q and n. Here p denotes the value of a+b andq denotes the value of ab. Input is terminated by a line containing only two zeroes. This line should not be processed. Each number in the input file fits in a signed 32-bit integer. There will be no such input so that you have to find the value of 00.
For each line of input except the last one produce one line of output. This line contains the value of an+bn. You can always assume that an+bn fits in a signed 64-bit integer.
10 16 2 7 12 3 0 0 |
68 91
|
Problem setter: Shahriar Manzoor, Member of Elite Problemsetters‘ Panel
Special Thanks: Mohammad Sajjad Hossain
题意很明显就是求a^n+b^n;
我们发现f0=2,f1=a+b,f2=a^2+b^2=(a+b)*f1-a*b*f2....
依次递推,令p=a+b,q=a*b;
所以fi=fi-1*p-fi-2*q;
构造出矩阵后就可以求解了。
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<string> #include<iostream> #include<queue> #include<cmath> #include<map> #include<stack> #include<bitset> using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) typedef long long LL; typedef pair<int,int>pil; const int INF = 0x3f3f3f3f; struct Matrix{ LL mat[2][2]; void Clear() { CLEAR(mat,0); } }; Matrix mult(Matrix m1,Matrix m2) { Matrix ans; for(int i=0;i<2;i++) for(int j=0;j<2;j++) { ans.mat[i][j]=0; for(int k=0;k<2;k++) ans.mat[i][j]=ans.mat[i][j]+m1.mat[i][k]*m2.mat[k][j]; } return ans; } Matrix Pow(Matrix m1,LL b) { Matrix ans;ans.Clear(); for(int i=0;i<2;i++) ans.mat[i][i]=1; while(b) { if(b&1) ans=mult(ans,m1); b>>=1; m1=mult(m1,m1); } return ans; } LL p,q,n; int main() { while(scanf("%lld%lld%lld",&p,&q,&n)==3) { Matrix A; if(n==0) { puts("2"); continue; } if(n==1) { printf("%lld\n",p); continue; } A.mat[0][0]=p;A.mat[0][1]=-q; A.mat[1][0]=1;A.mat[1][1]=0; A=Pow(A,n-1); LL ans=A.mat[0][0]*p+A.mat[0][1]*2; printf("%lld\n",ans); } return 0; }
2 3 1 2013 2 3 2 2013 2 2 1 2013
4 14 4
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<string> #include<iostream> #include<queue> #include<cmath> #include<map> #include<stack> #include<bitset> using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) typedef long long LL; typedef pair<int,int>pil; const int INF = 0x3f3f3f3f; struct Matrix{ LL mat[2][2]; void Clear() { CLEAR(mat,0); } }; LL a,b,n,m; Matrix mult(Matrix m1,Matrix m2) { Matrix ans; for(int i=0;i<2;i++) for(int j=0;j<2;j++) { ans.mat[i][j]=0; for(int k=0;k<2;k++) ans.mat[i][j]=(ans.mat[i][j]+m1.mat[i][k]*m2.mat[k][j])%m; } return ans; } Matrix Pow(Matrix m1,LL b) { Matrix ans;ans.Clear(); for(int i=0;i<2;i++) ans.mat[i][i]=1; while(b) { if(b&1) ans=mult(ans,m1); b>>=1; m1=mult(m1,m1); } return ans; } int main() { while(scanf("%I64d%I64d%I64d%I64d",&a,&b,&n,&m)!=EOF) { LL p=2*a,q=a*a-b;//x^n+y^n Matrix A; if(n==1) { printf("%I64d\n",p); continue; } A.mat[0][0]=p;A.mat[0][1]=-q; A.mat[1][0]=1;A.mat[1][1]=0; A=Pow(A,n-1); LL ans=A.mat[0][0]*p%m; ans=((ans+A.mat[0][1]*2)%m+m)%m; printf("%I64d\n",ans); } return 0; }
UVA 10655 Contemplation! Algebra(矩阵快速幂)
标签:
原文地址:http://blog.csdn.net/u013582254/article/details/44466971