码迷,mamicode.com
首页 > 其他好文 > 详细

1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完

时间:2015-03-20 10:51:47      阅读:135      评论:0      收藏:0      [点我收藏+]

标签:

传送门

1597: [Usaco2008 Mar]土地购买

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1979  Solved: 705
[Submit][Status][Discuss]

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

* 第1行: 一个数: N

* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

* 第一行: 最小的可行费用.

Sample Input

4
100 1
15 15
20 5
1 100

输入解释:

共有4块土地.

Sample Output

500

HINT

 

FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.

 

Source

 
 
先转载一发大牛的博客:http://blog.csdn.net/sdj222555/article/details/8229192
 
以下题解来自上面的博客:

这题还算是比较经典的。

首先我们按x,y都递减排序。其中x是宽,y是长

然后发现如果一个矩形的长宽都不大于另一个矩形的长宽。那么这个矩形的花费就是0,因为买那个矩形顺便就买了这个小的。

所以去除这些不花钱的矩形。

剩下的矩形,x是递减的,y是递增的

然后可以写出转移方程

f[i] = min(f[j] + x[j + 1] * y[i]) (j < i)

然后为了方便,把x数组坐标提前一下

f[i] = min(f[j] + x[j] * y[i]) (j < i)

然后发现是n ^2的。不优化会超时

这就要用到经典的斜率优化了

考虑两个决策f[j],f[k]并假设j<k。
如果对于f[i],从f[j]转移来比从f[k]转移来更优,那么有:
f[j]+x[j]*y[i]<f[k]+x[k]*y[i]
移项得:
y[i]<(f[k]-f[j])/(x[j]-x[k])

令g[j,k] = (f[k]-f[j])/(x[j] - x[k])

则g[j,k] > y[i] 表示j比k更优。则k可以舍弃掉

进而我们发现这么一个问题,当c < b < a < i时,如果有g[c, b] > g[b, a],那么b永远都不会成为计算dp[i]时的决策点。
证明:
如果g[c, b] > g[b, a],那么我们可以分两个方面考虑g[c, b]与的关系:
(1)如果g[c, b] >= y[i],那么决策c不会比决策b差,也就说决策b不可能是决策点
(2)如果g[c, b] < y[i],那么由于g[c, b] > g[b, a],那么g[b, a] < y[i],那么决策a要比决策b好,所以b还不能作为决策点   

根据上面的结论和一些特性,我们可以考虑维护一个斜率的队列来优化整个DP过程:


(1)假设a, b, c依次是队列右端的元素,那么我们就要考虑g[a, b]是否大于g[b, c],如果g[a, b] > g[b, c],那么可以肯定b一定不会是决策点,所以我们可以从队列中将b去掉,然后依次向前推,直到找到一个队列元素少于3个或者g[a, b] <= g[b, c]的点才停止。
(2)假设a, b是依次是队列左端的元素,那么我们知道,如果g[a, b] < y[i]的话,那么对于i来说决策点b肯定优于决策点a,又由于y是随着i递增而递增的,所以当g[a, b] < y[i]时,就一定有g[a, b] < y[i+1],因此当前的决策点a不仅仅在考虑dp[i]时不会是最佳决策点,而且在后面的DP中也一定不会是最佳决策点,所以我们可以把a从队列的头部删除,依次往后如此操作,直到队列元素小于2或者g[a, b] >= y[i]。
(3)对于i的更新,一定是队列头部的决策点最好,所以O(1)即可转移。

我觉得这里http://blog.163.com/lqp18_31/blog/static/5418276920091122101325111/讲的还行

总体感觉斜率优化DP推起来还是比较麻烦的

然后每次对i决策时,先操作左端的元素得到最优解,然后操作右端的元素将i状态插进队列

 

最后简单的说,就是维护一个g[x,y]的单调队列  队列中第一个元素  g[a,b]>=y[i]

 

 

1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完

标签:

原文地址:http://www.cnblogs.com/njczy2010/p/4352951.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!