码迷,mamicode.com
首页 > 其他好文 > 详细

MDP:马尔科夫决策过程(二)

时间:2015-03-20 12:17:10      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:

MDP:马尔科夫决策过程(Markov Decision Process)

策略评价:

对于确定性动作(deterministic actions),由于状态转换可能是无限的,那么奖惩函数之和的值也可能是无限的;对于随机性动作(stochastic actions),同样,奖惩函数期望之和也有可能是无限的。

需要定义一个客观函数(objective function)来将无穷的奖惩序列转换成单一的实数,来表示效用。

大概有三种方式:

  1. 设立一个确定的界限,只计算这几步范围内的奖惩函数之和
  2. 对每一步的奖惩添加折扣,并且偏向于较为靠前的状态的所收到的奖惩(reword)
  3. 平均奖惩率(Average reward rate in the limit)

其中,第二种,折扣法是比较常用的,主要介绍这一种。折扣法:

第 n 步的奖惩(reword)被乘以γn的折扣,这里的γ大于等于0,小于1。也就意味着该方法更偏向于较近的步数收到的奖惩

然后对这 n 步的带折扣奖惩进行累加

为了衡量一个策略的好坏,我们使用值函数 Vπ (Value Function),定义如下:

在每一个状态按照策略 π 执行所获得的客观函数的值(Objective function)

技术分享

R(s,π(s))表示当前状态 s 下,按照策略 π 执行动作 π(s) 所获得奖惩

上面的式子也可写做递归的形式:技术分享

这样就可按照值函数对每个策略进行排列,就会存在至少一个最优策略,V*

(下一篇将接着介绍贝尔曼等式(Bellman equations))

MDP:马尔科夫决策过程(二)

标签:

原文地址:http://www.cnblogs.com/coolalan/p/4353034.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!