码迷,mamicode.com
首页 > 其他好文 > 详细

随机选择带权重的item

时间:2015-03-20 16:29:03      阅读:156      评论:0      收藏:0      [点我收藏+]

标签:random   select   音乐   算法   

http://blog.csdn.net/pipisorry/article/details/44491727

Question:(随机数相关)

假设张三的mp3里有1000首歌,现在希望设计一种随机算法来随机播放。与普通随机模式不同的是,张三希望每首歌被随机到的改了吧是与一首歌的豆瓣评分(0~10分)成正比的,如item0评分为8.9分,item1评分为9.5分,则希望听item0的概率与item1的概率比为89:95,。现在我们已知这1000首歌的豆瓣评分。

解决方案:
一、
def randomSelect(item_list):
    '''
    随机选择带权重的list中的某个item,并返回其下标(item_list权重和可以不为1)
    :param item_list:
    :return:
    '''
    accu_item_list = add.accumulate(item_list)
    # print(type(accu_item_list))
    random_select = random.random() * accu_item_list[-1]
    for accu_item_id, accu_item in enumerate(accu_item_list):
        if accu_item > random_select:
            return accu_item_id


def cal_ratio(item_list):
    '''
    计算每个item在item_list中的比重
    :param item_list:
    :return:
    '''
    all_sum = sum(item_list)
    for i in item_list:
        print(i / all_sum)


if __name__ == '__main__':
    item_list = [0.1, 0.4, 0.6, 0.8, 0.3]
    cal_ratio(item_list)

    item_list_all = []
    item_list_cnt = []
    for i in range(100000):
        selected_item_id = randomSelect(item_list)
        item_list_all.append(selected_item_id)
    for i in range(len(item_list)):
        item_list_cnt.append(item_list_all.count(i))
    cal_ratio(item_list_cnt)


Note:
原理所有比重加和为accu_item_list[-1](可看成一维上的长度, 是所有item长度的和,且大比重的item长度相对更长), 在这个总长度上掷骰子,长度长的item选中概率大。

二、

(1)1000首歌曲编号,从1至1000
(2)随机选择一首歌:产生一个1至1000的随机数,表示要播放的歌曲,这时,所有的歌曲被选中播放的概率是相同的
(3)选定的歌播放与否:假设选定的歌曲是54号,它的豆瓣评分是9.5分,那么此时再随机生成一个1至100的随机数,如果随机数小于等于95,那么就播放这首歌曲,如果随机数大于95,则重复1,2,3的步骤,直至找到一首可以播放的歌曲
备注:两首歌曲,评分分别为8.0,9.5,他们被选中的概率为1/1000,选中后还要产生一次随机数,被播放的概率分别为80%,95%,选中概率相同,播放概率比恰好是分数比值


详细解释:

重述算法本身:
1、以[1,N]均匀分布产生随机数s;
2、以[0,1]均与分布产生随机数q,若q<ps,则选择第s首歌,算法结束;否则,跳转到第1步。

下面的研究对象,都是仅考察第i首音乐:
假设它第n次被选中的概率为f(n),前n次被选中的概率为s(n),即s(n)=f(1)+f(2)+...+f(n)。
显然有:f(n) = s(n) - s(n-1)

第n+1次被选中的概率为:
f(n+1) = (1-s(n))(1/N) * pi其中,1-s(n)表示前n次都没有被选中。
从而:s(n)= 1 - (f(n+1)
N/pi)

令a = -N/pi,则:
s(n) = af(n+1) + 1
从而:s(n-1)=af(n) + 1
两式相减,得到:
f(n) = af(n+1) - af(n)
从而:q = f(n+1) / f(n) = (1+a)/a = (N-1)/N
而f(1)=pi/N
从而,s(n) = f(1) / (1 - q) = pi

结论仍然是:这种做法是对的

此外,虽然啰嗦了这么多,再说两点:
1、通过上面的式子:f(n+1) / f(n) = (N-1)/N可以看出,其实第n+1次的概率比第n次的概率,是等比数列的。
2、以上仅仅是高中“等比数列”“通项公式和前n项和公式”的简单运算。


复杂度分析:

需要多少次才能成功选中一首歌的期望值

技术分享


这个期望值E只和歌曲列表的平均分A有关,如果选了无数次还没有成功命中的话,只能说明是听歌的人品位太差。。。。。

夸张一点说,假如说某君从来没有成功定位过一首歌,说明他听的歌全都是0分哈哈哈哈哈哈哈哈

所以,从这个角度考虑,这个算法还是有一定缺点的

下面我来补充下我自己的想法吧,和其他已有的回答有相似之处,大家看看就好

假设列表里有1000首歌,每首歌的打分是0~100间的整数
  1. 定义一个大小1000的数组A[1000], 这个数组的每个元素分别存放第0~i首歌的打分之和,设数组最后一个元素为A[999]为M;
  2. 随机生成一个0~M间的随机数R;
  3. 利用折半查找,找到第一个大于等于R的元素的下标,则该下标即为选中的歌曲编号。

算法的时间复杂度即为折半查找的时间复杂度O(lgn),n是列表中歌曲的数目

from:http://blog.csdn.net/pipisorry/article/details/44491727

ref:http://ask.julyedu.com/question/127


随机选择带权重的item

标签:random   select   音乐   算法   

原文地址:http://blog.csdn.net/pipisorry/article/details/44491727

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!