标签:
问题来源:https://leetcode.com/problems/unique-binary-search-trees/
/**
*
* <p>
* ClassName UniqueBinarySearchTrees
* </p>
* <p>
* Description Given n, how many structurally unique BST‘s (binary search trees二叉查找树) that store values 1...n? For example, Given
* n = 3, there are a total of 5 unique BST‘s.<br/>
* 1 3 3 2 1<br/>
* \ / / / \ \<br/>
* 3 2 1 1 3 2<br/>
* / / \ \<br/>
* 2 1 2 3<br/>
* </p>
*
* @author TKPad wangx89@126.com
* <p>
* Date 2015年3月20日 下午2:11:23
* </p>
* @version V1.0.0
*
*
*/
/**
* 卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, 5, 14, 42, 132, 429, 1430,
* 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020,
* 91482563640, 343059613650, 1289904147324, 4861946401452
*/
/**
* 令h(0)=1,h(1)=1,catalan数满足递推式[1] : h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
* h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5 另类递推式[2] : h(n)=h(n-1)*(4*n-2)/(n+1); 递推关系的解为: h(n)=C(2n,n)/(n+1)
* (n=0,1,2,...) 递推关系的另类解为: h(n)=c(2n,n)-c(2n,n+1)(n=0,1,2,...)
*/
public class UniqueBinarySearchTrees {
// Time Limit Exceeded
// public int numTrees(int n) {
// if (0 == n || 1 == n) {
// return 1;
// } else {
// int sum = 0;
// for (int i = 0; i <= n - 1; i++) {
// sum += numTrees(i) * numTrees(n - 1 - i);
// }
// return sum;
// }
// }
public int numTrees(int n) {
if (n <= 1) {
return 1;
}
if (n == 2) {
return 2;
}
int nums[] = new int[n + 1];
nums[0] = 1;
nums[1] = 1;
nums[2] = 2;
for (int i = 3; i < nums.length; i++) {
int temp = 0;
for (int j = 0; j < i; j++) {
temp += nums[j] * nums[i - j - 1];
}
nums[i] = temp;
}
return nums[nums.length - 1];
}
public static void main(String[] args) {
// Last executed input: 19
// int numTrees = new UniqueBinarySearchTrees().numTrees(0);// 1
// int numTrees = new UniqueBinarySearchTrees().numTrees(1);// 1
// int numTrees = new UniqueBinarySearchTrees().numTrees(2);// 1
int numTrees = new UniqueBinarySearchTrees().numTrees(3);// 1
// int numTrees = new UniqueBinarySearchTrees().numTrees(6);// 132
// int numTrees = new UniqueBinarySearchTrees().numTrees(19);
System.out.println(numTrees);
}
}
标签:
原文地址:http://blog.csdn.net/shijiebei2009/article/details/44514867