题目链接:http://acm.fzu.edu.cn/problem.php?pid=2173
思路:
类似于传递闭包的性质
用矩阵mp[i][j] 表示i点到j点 走1次的最短路
--------------
若我们用 mp[i][j] 表示从i点到j点 走了k次的最短路距离
那么我们要通过 矩阵mp 得到 矩阵 ret[u][v] 表示 u->v 走了2*k次的最短路
就是:
mp[u][i] + mp[i][v]; i为任意点(即1-n)
显然我们转换一下上式就是:
ret[u][v] = inf; for(int i = 1; i <= n; i++) ret[u][v] = min(ret[u][v], mp[u][i]+mp[i][v]);
然后求出整个的ret矩阵就是:
for(int u = 1; u<=n; u++)
for(int v = 1; v<=n; v++){
ret[u][v] = inf;
for(int i = 1; i <= n; i++)
ret[u][v] = min(ret[u][v], mp[u][i]+mp[i][v]);
}显然就是 ret = mp*mp;
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
#define Matr 55 //矩阵大小,注意能小就小
#define ll long long
#define N 52
#define inf 100000000000000000
struct mat{//矩阵结构体,a表示内容,size大小 矩阵从1开始
ll a[Matr][Matr];
int size;
};
mat multi(mat m1,mat m2)//两个相等矩阵的乘法,对于稀疏矩阵,有0处不用运算的优化
{
mat ans;ans.size=m1.size;
for(int i=1;i<=m1.size;i++)
for(int j=1;j<=m2.size;j++)
{
ll tmp = inf;
for(int k = 1; k <= m1.size; k++)
tmp = min(tmp, m1.a[i][k] + m2.a[k][j]);
ans.a[i][j]=tmp;
}
return ans;
}
mat quickmulti(mat m,int n){
mat ans=m;
n--;
while(n){
if(n&1)ans=multi(m,ans);
m=multi(m,m);
n>>=1;
}
return ans;
}
mat mp;
int n, m, k;
int main(){
int u, v, i, j, T; scanf("%d",&T);
ll d;
while(T--){
scanf("%d %d %d",&n,&m,&k);
for(i=1;i<=n;i++)for(j=1;j<=n;j++)mp.a[i][j] = inf;
mp.size = n;
while(m--){
scanf("%d %d",&u,&v); cin>>d;
mp.a[u][v] = min(mp.a[u][v], d);
}
mat ans = quickmulti(mp,k);
if(ans.a[1][n]==inf)puts("-1");
else cout<<ans.a[1][n]<<endl;
}
return 0;
}
FOJ 2173 Nostop 从1点到n点恰好走了k次的最短路,码迷,mamicode.com
FOJ 2173 Nostop 从1点到n点恰好走了k次的最短路
原文地址:http://blog.csdn.net/acmmmm/article/details/24664817