标签:
【问题描述】
上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:
1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。
【问题分析】
穷举算法:用4个变量来表示分分子和分母,分式可表示为a/b×c/d=ac/bd,只要对a,b,c,d的所有情况进行穷举,穷举范围1~9,穷举过程中对分式是否成立进行判断,成立计数器加1,最后输出结果。穷举过程中还有两钟情况需要注意,即a!=b,c!=d。
在计算分式时不能直接计算,因为分式的计算结果是浮点数,浮点数在比较是否相等时是不准确的,如0.1+0.2==0.3这个条件看起来是成立的,而实际结果为false。因此要化分数运算为整数运算,分式a/b×c/d=ac/bd要转换为a×c×bd=b×d×ac。
【】
标签:
原文地址:http://www.cnblogs.com/yzzdzy/p/4374370.html