标签:style blog http color os strong
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
.
This is equivalent to ax≡1 (mod m)
.
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
For each test case, output the smallest positive x. If such x doesn‘t exist, output "Not Exist".
3 3 11 4 12 5 13
4 Not Exist 8
模线性方程ax=b (mod n),令d=exgcd(a,n),该方程有解的充要条件为 d | b ,即 b% d==0
方程ax=b(mod n)的最小解 :x=(x*(b/d))%n
方程ax=b(mod n)的最整数小解: x=(x%(n/d)+n/d)%(n/d)
因为要求输出最小整数,所以如果答案为0的话,肯定是m=1的情况,此情况应输出1.//0ms 168k #include<stdio.h> #include<string.h> int exgcd(int A,int &x,int B,int &y) { int x1,y1,x0,y0; x0=1;y0=0; x1=0;y1=1; int r=(A%B+B)%B; int q=(A-r)/B; x=0;y=1; while(r) { x=x0-q*x1; y=y0-q*y1; x0=x1; y0=y1; x1=x;y1=y; A=B;B=r;r=A%B; q=(A-r)/B; } return B; } int main() { int t; scanf("%d",&t); while(t--) { int a,b=1,n,x,y; scanf("%d%d",&a,&n); int d=exgcd(a,x,n,y); if(b%d==0) { x=(x%(n/d)+n/d)%(n/d); if(!x)x++; printf("%d\n",x); } else printf("Not Exist\n"); } }
ZOJ 3609 Modular Inverse 解线性模方程,码迷,mamicode.com
ZOJ 3609 Modular Inverse 解线性模方程
标签:style blog http color os strong
原文地址:http://blog.csdn.net/crescent__moon/article/details/24664009