码迷,mamicode.com
首页 > 其他好文 > 详细

Best time to buy and sell stock 3 --- LeetCode

时间:2015-03-29 12:14:11      阅读:150      评论:0      收藏:0      [点我收藏+]

标签:leetcode   算法   c++   

题目:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

思路:这次限定了次数 那么可以以某一天为分界点 在这一天之前最大的盈利和这一天之后的最大盈利 这两个盈利之和变为两次交易的最大盈利

#include <iostream>
#include <vector>
using namespace std;


/*
 思路:可以将两次分为历史和将来 从某一天开始 历史的最好盈利和将来的最好盈利 
 这两者的和 即为买卖两次的最佳盈利 
  
*/
int SellStockThird(vector<int>& vec)
{
	vector<int> share(vec.size(),0);
	vector<int> his(vec.size(),0);
	vector<int>	fur(vec.size(),0);
	int i,j=0;
	for(i=1;i<vec.size();i++)
		share[i] = vec[i]-vec[i-1];
	
	int cur=share[0];
	int sum = share[0];
	for(i=1;i<vec.size();i++)
	{
		if(cur < 0)
		 cur = share[i];
		else
		{
			cur+=share[i];
			his[i] = cur;
		}
			
	 	if(sum < cur)
	 	{
	 		sum = cur;
	 		his[i] = sum;
	 	}
	 	else
	 		his[i] = his[i-1];		
	}
		
	cur = share[share.size()-1];
	sum = cur;
	for(i=vec.size()-2;i>=0;i--)
	{
		if(cur < 0)
		 cur = share[i];
		else
		{
			cur+=share[i];
			fur[i] = cur;
		}
			
	 	if(sum < cur)
	 	{
	 		sum = cur;
	 		fur[i] = sum;
	 	}
	 	else
	 		fur[i] = fur[i+1];		
	}
		
	sum =0;
	
	for(i=0;i<his.size()-1;i++)
		if(sum < his[i]+fur[i+1])
			sum = his[i]+fur[i+1];
	
	return sum;
}

int main()
{
	int array[]={12,8,10,6,15,18,10};
	vector<int> vec(array,array+sizeof(array)/sizeof(int));
	cout<<SellStockThird(vec);
	return 0;
}

现在我们最多可以进行两次交易。我们仍然使用动态规划来完成,事实上可以解决非常通用的情况,也就是最多进行k次交易的情况。
这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,

global[i][j]=max(local[i][j],global[i-1][j]),
也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff),
也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。
上面的算法中对于天数需要一次扫描,而每次要对交易次数进行递推式求解,所以时间复杂度是O(n*k),如果是最多进行两次交易,那么复杂度还是O(n)。空间上只需要维护当天数据皆可以,所以是O(k),当k=2,则是O(1)。代码如下:
    public int maxProfit(int[] prices) {  
        if(prices==null || prices.length==0)  
            return 0;  
        int[] local = new int[3];  
        int[] global = new int[3];  
        for(int i=0;i<prices.length-1;i++)  
        {  
            int diff = prices[i+1]-prices[i];  
            for(int j=2;j>=1;j--)  
            {  
                local[j] = Math.max(global[j-1]+(diff>0?diff:0), local[j]+diff);  
                global[j] = Math.max(local[j],global[j]);  
            }  
        }  
        return global[2];  
    }  


Best time to buy and sell stock 3 --- LeetCode

标签:leetcode   算法   c++   

原文地址:http://blog.csdn.net/yusiguyuan/article/details/44725835

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!