码迷,mamicode.com
首页 > 其他好文 > 详细

1维KD-Tree查找指定范围内的元素

时间:2015-03-30 09:25:54      阅读:219      评论:0      收藏:0      [点我收藏+]

标签:avl   二叉树   kd-tree   

OneKdTree.h

#include <algorithm>
#include <set>
#include <iostream>

using namespace std;

class AvlTree;

class AvlNode{
	friend class AvlTree;
	int data;
	int height;
	AvlNode *left;
	AvlNode *right;
	AvlNode(int _data) :data(_data), height(0), left(NULL), right(NULL){}
};

class AvlTree{
	AvlNode *root;
public:
	AvlTree() :root(NULL){}
	int Height(AvlNode *node){ return node == NULL ? -1 : node->height; }
	void Insert(int _data){ _insert(root, _data); }
	void Delete(int _data){ _delete(root, _data); }
	bool Find(int _data);
	void print(){ travel(root); cout << endl; }
	void OneDRangeQuery(int low, int high);
private:
	AvlTree(const AvlTree &);
	AvlTree& operator=(const AvlTree&);
	void LL(AvlNode* &node);
	void RR(AvlNode* &node);
	void RL(AvlNode* &node);
	void LR(AvlNode* &node);
	void _insert(AvlNode* &node,int  _data);
	void _delete(AvlNode* &node, int  _data);
	void travel(AvlNode *node);
	AvlNode *FindMin(AvlNode *node);
	AvlNode *FindParent(AvlNode *node, int _data);
	void ParentRotate(AvlNode* &node, AvlNode* &parent);
	void LeftHigherhanRight(AvlNode* &node);
	void RightHigherhanLeft(AvlNode* &node);
	AvlNode* FindSplitNode(int low, int high);
};

void AvlTree::OneDRangeQuery(int low, int high)
{
	AvlNode *node = FindSplitNode(low, high);
	if (node == NULL)
		return;
	if (node->left == NULL&&node->right == NULL){
		if (node->data >= low && node->data <= high)
			cout << node->data << " ";
	}
	else {
		AvlNode *temp = node->left;
			while (temp&&(temp->left != NULL || temp->right != NULL)){
				if (temp->data >= low){
					travel(temp->right);
					temp = temp->left;
				}
				else {
					temp = temp->right;
				}
			}
			if (temp&&temp->data >= low&&temp->data <= high)
				cout << temp->data << " ";

		temp = node->right;
			while (temp&&(temp->left != NULL || temp->right != NULL)){
				if (temp->data <= high){
					travel(temp->left);
					temp = temp->right;
				}
				else {
					temp = temp->left;
				}
			}
			if (temp&&temp->data >= low&&temp->data <= high)
				cout << temp->data << " ";
	}
	cout << endl;
}

AvlNode* AvlTree::FindSplitNode(int low, int high)
{
	if (low > high)
		return NULL;
	AvlNode *node = root;
	if (node == NULL)
		return NULL;
	while ((node->right != NULL || node->left != NULL) && (node->data >= high || node->data < low)){
		if (node->data >= high)
			node = node->left;
		else
			node = node->right;
	}
	return node;
}

void AvlTree::LeftHigherhanRight(AvlNode* &node)
{
	if (Height(node->left) - Height(node->right) == 2){
		if (node->left){
			if (Height(node->left->right) > Height(node->left->left))
				LR(node);
			else
				LL(node);
		}
	}
}


void AvlTree::RightHigherhanLeft(AvlNode* &node)
{//调用次数多,封装成函数
	if (Height(node->right) - Height(node->left) == 2){
		if (node->right){
			if (Height(node->right->left)>Height(node->right->right))
				RL(node);
			else
				RR(node);
		}
	}
}


void AvlTree::ParentRotate(AvlNode* &node, AvlNode* &parent)
{//旋转从node到parent路径上的每一个结点,使之平衡
	if (parent == NULL)
		return;

	if (node->data > parent->data){
		ParentRotate(node->left, parent);
	}
	else if (node->data<parent->data){
		ParentRotate(node->right, parent);
	}

	LeftHigherhanRight(node);
	RightHigherhanLeft(node);

}


AvlNode *AvlTree::FindParent(AvlNode *node, int _data)
{//找父亲结点
	if (node == NULL || node->data == _data)
		return NULL;
	if ((node->left && node->left->data == _data) || (node->right&&node->right->data == _data))
		return node;
	else if (node->data>_data)
		return FindParent(node->left, _data);
	else if (node->data<_data)
		return FindParent(node->right, _data);
}


AvlNode *AvlTree::FindMin(AvlNode *node)
{//找最小结点
	if (node){
		while (node->left)
			node = node->left;
	}
	return node;
}


void AvlTree::_delete(AvlNode* &node, int  _data)
{
	if (node == NULL){
		//	cout << "the element is not exit" << endl;
		return;
	}
	else {
		if (_data < node->data){
			_delete(node->left, _data);
			RightHigherhanLeft(node);//右子树高于左子树,旋转
		}
		else if (_data > node->data){
			_delete(node->right, _data);
			LeftHigherhanRight(node);//左子树高于右子树,旋转
		}
		else {//定位到要删除的结点
			AvlNode *temp = FindMin(node->right);
			if (temp == NULL){//node没有右结点
				temp = node;
				node = node->left;
				delete temp;
			}
			else{
				if (temp == node->right){//node右结点没有左子树
					node->right = temp->right;
					node->data = temp->data;
					delete temp;
					LeftHigherhanRight(node);//删除后,可能左子树高于右子树
				}
				else{//node右结点有左子树
					AvlNode *parent = FindParent(node, temp->data);//寻找父节点
					node->data = temp->data;
					parent->left = temp->right;
					delete temp;
					//parent may not balence
					ParentRotate(node, parent);//使得node到parent路径上的每一个结点能够平衡
				}
			}
		}
	}
	if (node != NULL)
		node->height = std::max(Height(node->left), Height(node->right)) + 1;//更新高度
}


void AvlTree::_insert(AvlNode* &node, int _data)
{
	if (node == NULL){
		node = new AvlNode(_data);//找到插入点
	}
	else {
		if (_data <= node->data){
			_insert(node->left, _data);//插入到左子树后,判断其高度是否平衡
			if (Height(node->left) - Height(node->right) == 2){
				if (_data > node->left->data)
					LR(node);
				else
					LL(node);
			}
		}
		else if (_data > node->data){//插入到右子树后,判断其高度是否平衡
			_insert(node->right, _data);
			if (Height(node->right) - Height(node->left) == 2){
				if (_data<node->right->data)
					RL(node);
				else
					RR(node);
			}
		}
	}

	node->height = std::max(Height(node->left), Height(node->right)) + 1;//更新高度
}


void AvlTree::LL(AvlNode* &node)
{
	AvlNode *temp = node->left;
	node->left = temp->right;
	temp->right = node;

	node->height = std::max(Height(node->left), Height(node->right)) + 1;
	temp->height = std::max(Height(temp->left), Height(temp->right)) + 1;

	node = temp;

}


void AvlTree::RR(AvlNode* &node)
{
	AvlNode *temp = node->right;
	node->right = temp->left;
	temp->left = node;

	node->height = std::max(Height(node->left), Height(node->right)) + 1;
	temp->height = std::max(Height(temp->left), Height(temp->right)) + 1;

	node = temp;
}


void AvlTree::LR(AvlNode* &node)
{
	RR(node->left);
	LL(node);
}


void AvlTree::RL(AvlNode* &node)
{
	LL(node->right);
	RR(node);
}


void AvlTree::travel(AvlNode *node)
{
	if (node){
		if (node->right == NULL&&node->left == NULL){
			cout << node->data << " ";
		}
		else {
			travel(node->left);
			travel(node->right);
		}
	}
}


test.cpp


#include <iostream>
#include <ctime>
#include <cstdlib>
#include "OneKdTree.h"

int main(void)
{
	AvlTree tree;
	tree.Insert(54);
	tree.Insert(34);
	tree.Insert(23);
	tree.Insert(12);
	tree.Insert(54);
	tree.Insert(12);
	tree.Insert(23);
	tree.Insert(59);
	tree.Insert(34);
	tree.Insert(59);
	tree.Insert(5);
	tree.Insert(5);
	tree.Insert(97);
	tree.Insert(97);
	
	tree.OneDRangeQuery(4, 97);
	return 0;
}



1维KD-Tree查找指定范围内的元素

标签:avl   二叉树   kd-tree   

原文地址:http://blog.csdn.net/u012637838/article/details/44733577

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!