标签:
#include <iostream> #include "highgui.h" #include "cv.h" #include "cxcore.h" #include "math.h" using namespace std; using namespace cv; //绘制1维直方图 Mat draw1DHistogram(Mat histogramMat) { double maxVal = 0, minVal = 0; minMaxLoc(histogramMat, &minVal, &maxVal, 0, 0); Mat histImage(histogramMat.rows, histogramMat.rows, CV_8U, Scalar(255)); int hpt = static_cast<int>(0.9 * histogramMat.rows); for (int h = 0; h < histogramMat.rows; h++) { float binVal = histogramMat.at<float>(h); int intensity = static_cast<int>((binVal / maxVal) * hpt); line(histImage, Point(h, histogramMat.rows - 1), Point(h, histogramMat.rows - 1 - intensity), Scalar::all(0)); } return histImage; } //一维直方图计算(采用实际图像) 实验2 void get1DHistogramExperiment2(Mat& image) { //计算直方图 使用的图片数量 int nImageArrays = 1; //使用的直方图数组 Mat* imageArrays = new Mat[nImageArrays]; //加载实际图像 // Mat image = imread("e:\\citywall1.bmp", 0); if (image.data == NULL) { printf("加载图像失败\n"); return; } imageArrays[0] = image; //直方图的维数 const int dims = 1; //在图像的通道序列中 本次直方图计算使用了哪些通道,本代码中使用了编号为0的通道 int channels[dims] = { 0 }; //直方图中每一维上的bin数,本代码是创建一维直方图 并且 分为256个bin int histBins[dims] = { 256 }; //保存直方图的结果 CV_32F,dims说明矩阵的维度,histBins说明矩阵每一维上的大小 Mat histND(dims, histBins, CV_32F, Scalar::all(0)); //手动指定各个bin的取值范围 //float image1Range[5]={0.0,50.0,200.0,220.0,256.0}; //统一分割,只需要指定bin[0]的下限值和bin[histBins[dims-1]-1]的上限值即可 float image1Range[5] = { 0.0, 256.0 }; //各个通道的 bin划分规则 const float* allRanges[dims] = { image1Range }; //直方图计算 calcHist(imageArrays, nImageArrays, channels, Mat(), histND, dims, histBins, allRanges, true); //绘制直方图 Mat histImage = draw1DHistogram(histND); //显示直方图 namedWindow("hist"); imshow("hist", histImage); waitKey(0); } /** * 直方图均衡 */ void HistogramEqual(Mat& src){ Mat dst; equalizeHist(src,dst); //直方图均衡化 get1DHistogramExperiment2(dst); namedWindow("equal"); imshow("equal",dst); waitKey(0); } int main() { Mat image = imread("e:\\test.bmp", CV_LOAD_IMAGE_GRAYSCALE); namedWindow("src"); imshow("src",image); get1DHistogramExperiment2(image); HistogramEqual(image); return 0; }
标签:
原文地址:http://www.cnblogs.com/kakaxisir/p/4379362.html