标签:sicily
Time Limit: 10 secs, Memory Limit: 32 MB
Sudoku is a placement puzzle. The goal is to enter a symbol in each cell of a grid, most frequently a 9 x 9 grid
made up of 3 x 3 subgrids. Each row, column and
subgrid must contain on
The word Sudoku means ``single number" in Japanese. The symbols in Sudoku puzzles are often numerals, but arithmetic relationships between numerals are irrelevant.
According to wikipedia:
The number of valid Sudoku solution grids for the standard 9 x9 grid was calculated by Bertram Felgenhauer in 2005 to be 6,670,903,752,021,072,936,960, which is roughly the number of micrometers to the nearest star. This number is equal to 9!* 722 * 27 * 27, 704, 267, 971 , the last factor of which is prime. The result was derived through logic and brute force computation. The number of valid Sudoku solution grids for the16 x 16 derivation is not known.
Write a program to find a solution to a 9 x 9 Sudoku puzzle given a starting configuration.
The first line will contain an integer specifying the number of puzzles to be solved. The remaining lines will specify the starting configuration for each of the puzzles. Each line in a starting configuration will have nine characters selected from the numerals 1-9 and the underscore which indicates an empty cell.
For each puzzle, the output should specify the puzzle number (starting at on
3 ________4 1____9_7_ __37_28__ ____7_26_ 4_______8 _91_6____ __42_36__ _3_14___9 9________ 7_9__2___ 3_____891 ___39___4 48__6____ __5___6__ ____4__23 2___57___ 568_____7 ___8__4_2 82_______ ___5__2__ __6_4_7__ _5___1_7_ 9_2_5_4_1 _3_8_6_9_ __3_6_1__ __5__2___ _______34
Puzzle 1 has 6 solutions Puzzle 2 solution is 719482365 324675891 856391274 482563719 135729648 697148523 243957186 568214937 971836452 Puzzle 3 has no solution
不剪枝就超时,用时0.29s:
#include <iostream> #include <vector> #include <string.h> #include <cstring> #include <stdio.h> #include <algorithm> using namespace std; //数独题,深搜,这是剪枝的 char ans[10][10];//用来储存最终答案 char maybe[10][10];//用来深搜 bool num_in_row[10][10], num_in_col[10][10], num_in_blo[10][10];//这里的数组[i][j]表示在第i行/列/块里面已经有了j这个数字(有的时候为true) int blank_num;//空白的数目 int ans_num; struct Blank { int pos_row, pos_col, pos_blo, possibility;//其中的possibility就是表示可能的数字的个数 }blank[85]; int find_block(int x, int y) {//返回属于的块编号 int block[10][10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9 }; return block[x][y]; } void dfs(int blank_now) {//blank_now指当前要填的空的编号 if (blank_now == blank_num) {//如果blank_now超过了总的空白数,也就是说空白都填完了那就返回 ans_num++; if (ans_num == 1) {//这个时候有了答案可以预备输出了 memcpy(ans, maybe, sizeof(maybe)); } return; } for (int possible = 1; possible <= 9; possible++) {//在一个空上有9种可能 if (!num_in_row[blank[blank_now].pos_row][possible] && !num_in_col[blank[blank_now].pos_col][possible] && !num_in_blo[blank[blank_now].pos_blo][possible]) { maybe[blank[blank_now].pos_row][blank[blank_now].pos_col] = possible + '0';//先填入答案中,就算不对,后来填的也可以覆盖 num_in_row[blank[blank_now].pos_row][possible] = true;//并更新这个空白的限制信息 num_in_col[blank[blank_now].pos_col][possible] = true; num_in_blo[blank[blank_now].pos_blo][possible] = true; dfs(blank_now + 1);//深搜 num_in_row[blank[blank_now].pos_row][possible] = false;//程序运行到这说明前面的假设没找到答案,因此还原这个空白的限制信息 num_in_col[blank[blank_now].pos_col][possible] = false; num_in_blo[blank[blank_now].pos_blo][possible] = false; } } } void set_blank(int k, int i, int j) { blank[k].possibility = 0; blank[k].pos_row = i; blank[k].pos_col = j; blank[k].pos_blo = find_block(i, j); } void calculate(int k) {//这里是计算可能的数的个数 for (int temp = 1; temp <= 9; temp++) { if (!num_in_row[blank[k].pos_row][temp] && !num_in_col[blank[k].pos_col][temp] && !num_in_blo[blank[k].pos_blo][temp]) { blank[k].possibility++; } } } bool cmp(const Blank &a, const Blank &b) {//按照从小到大的顺序排序 return a.possibility < b.possibility; } int main() { int case_num, i, j, k; scanf("%d", &case_num); for (k = 1; k <= case_num; k++) { ans_num = 0; blank_num = 0; memset(num_in_row, false, sizeof(num_in_row)); memset(num_in_col, false, sizeof(num_in_col)); memset(num_in_blo, false, sizeof(num_in_blo)); for (i = 1; i <= 9; i++) { scanf("%s", ans[i] + 1); } memcpy(maybe, ans, sizeof(ans)); for (i = 1; i <= 9; i++) { for (j = 1; j <= 9; j++) { if (ans[i][j] != '_') {//不是空白就更新限制信息 num_in_row[i][ans[i][j] - '0'] = true;//更新限制信息 num_in_col[j][ans[i][j] - '0'] = true; num_in_blo[find_block(i, j)][ans[i][j] - '0'] = true; } else { set_blank(blank_num, i, j); blank_num++; } } } for (i = 0; i < blank_num; i++) {//计算possibility calculate(i); } sort(blank, blank + blank_num, cmp);//排序,也就是剪枝 dfs(0); if (ans_num == 0) { printf("Puzzle %d has no solution\n", k); } else if (ans_num == 1) { printf("Puzzle %d solution is\n", k); for (i = 1; i <= 9; i++) { printf("%s\n", ans[i] + 1); } } else { printf("Puzzle %d has %d solutions\n", k, ans_num); } if (k != case_num) printf("\n"); } return 0; }
标签:sicily
原文地址:http://blog.csdn.net/u012925008/article/details/44763065