标签:
对应NYOJ题目:点击打开链接
4 [] ([])[] ((] ([)]
0 0 3 2
思路:区间DP。dp[i][j]表示第i个位置到第j个位置的最多匹配数(是2的倍数)。那串的长度 - dp[0][n-1] 就是答案。
先把相邻的匹配括号初始化为dp[i][i+1] = 2;如果str[i] 与 str[j] 匹配,则dp[i][j] = dp[i+1][j-1] + 2;之后有转移方程:dp[i][j] = max{dp[i][j], dp[i][k] + dp[k+1][j]}(i <= k <j);
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define M 110
#define MAX(x, y) ((x) > (y) ? (x) : (y))
char str[M];
int dp[M][M];
bool Check(char a, char b)
{
if(a == '[' && b == ']') return 1;
if(a == '(' && b == ')') return 1;
return 0;
}
int main()
{
//freopen("in.txt", "r", stdin);
int T;
int l, i, j, k, len;
scanf("%d", &T);
while(T--)
{
scanf("%s", str);
memset(dp, 0, sizeof(dp));
len = strlen(str);
for(i=0; i+1<len; i++)
if(Check(str[i], str[i+1]))
dp[i][i+1] = 2;
for(l=2; l<=len; l++){
for(i=0; i+l-1<len; i++){
j = i + l - 1;
if(Check(str[i], str[j])) dp[i][j] = dp[i+1][j-1] + 2;
for(k=i; k+1<=j; k++){
dp[i][j] = MAX(dp[i][j], dp[i][k] + dp[k+1][j]);
}
}
}
printf("%d\n", len - dp[0][len-1]);
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/u013351484/article/details/44758769