在前面的文章《OpenCV中feature2D学习——FAST特征点检测》中讲了利用FAST算子进行特征点检测,这里尝试使用FAST算子来进行特征点检测,并结合SIFT/SURF/BRIEF算子进行特征点提取和匹配。
由于数据类型的不同,SIFT和SURF算子只能采用FlannBasedMatcher或者BruteForceMatcher来进行匹配(参考OpenCV中feature2D学习——BFMatcher和FlannBasedMatcher)。
/** * @概述:采用FAST算子检测特征点,采用SIFT算子对特征点进行特征提取,并使用BruteForce匹配法进行特征点的匹配 * @类和函数:FastFeatureDetector + SiftDescriptorExtractor + BruteForceMatcher * @author:holybin */ #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/nonfree/features2d.hpp" //SurfFeatureDetector实际在该头文件中 #include "opencv2/legacy/legacy.hpp" //BruteForceMatcher实际在该头文件中 //#include "opencv2/features2d/features2d.hpp" //FlannBasedMatcher实际在该头文件中 #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src_1 = imread("cat3d120.jpg"); Mat src_2 = imread("cat0.jpg"); if( !src_1.data || !src_2.data ) { cout<< " --(!) Error reading images "<<endl; return -1; } //-- Step 1: 使用FAST算子检测特征点 FastFeatureDetector fast(20); vector<KeyPoint> keypoints_1, keypoints_2; fast.detect( src_1, keypoints_1 ); //FAST(src_1, keypoints_1, 20); fast.detect( src_2, keypoints_2 ); //FAST(src_2, keypoints_2, 20); cout<<"img1--number of keypoints: "<<keypoints_1.size()<<endl; cout<<"img2--number of keypoints: "<<keypoints_2.size()<<endl; //-- Step 2: 使用SIFT算子提取特征(计算特征向量) SiftDescriptorExtractor extractor; //SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( src_1, keypoints_1, descriptors_1 ); extractor.compute( src_2, keypoints_2, descriptors_2 ); //-- Step 3: 使用BruteForce法进行暴力匹配 BruteForceMatcher< L2<float> > matcher; //FlannBasedMatcher matcher; vector< DMatch > matches; matcher.match( descriptors_1, descriptors_2, matches ); cout<<"number of matches: "<<matches.size()<<endl; //-- 显示匹配结果 Mat matchImg; drawMatches( src_1, keypoints_1, src_2, keypoints_2, matches, matchImg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("matching result", matchImg ); imwrite("match_result.png", matchImg); waitKey(0); return 0; }
BRIEF算子只能采用BruteForceMatcher来进行匹配(参考OpenCV中feature2D学习——BFMatcher和FlannBasedMatcher)。
/** * @概述:采用FAST算子检测特征点,采用BRIEF算子对特征点进行特征提取,并使用BruteForce匹配法进行特征点的匹配 * @类和函数:FastFeatureDetector + BriefDescriptorExtractor + BruteForceMatcher * @author:holybin */ #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/nonfree/features2d.hpp" //SurfFeatureDetector实际在该头文件中 #include "opencv2/legacy/legacy.hpp" //BruteForceMatcher实际在该头文件中 //#include "opencv2/features2d/features2d.hpp" //FlannBasedMatcher实际在该头文件中 #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src_1 = imread("cat3d120.jpg"); Mat src_2 = imread("cat0.jpg"); if( !src_1.data || !src_2.data ) { cout<< " --(!) Error reading images "<<endl; return -1; } //-- Step 1: 使用FAST算子检测特征点 FastFeatureDetector fast(20); vector<KeyPoint> keypoints_1, keypoints_2; fast.detect( src_1, keypoints_1 ); //FAST(src_1, keypoints_1, 20); fast.detect( src_2, keypoints_2 ); //FAST(src_2, keypoints_2, 20); cout<<"img1--number of keypoints: "<<keypoints_1.size()<<endl; cout<<"img2--number of keypoints: "<<keypoints_2.size()<<endl; //-- Step 2: 使用BRIEF算子提取特征(计算特征向量) BriefDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( src_1, keypoints_1, descriptors_1 ); extractor.compute( src_2, keypoints_2, descriptors_2 ); //-- Step 3: 使用BruteForce法进行暴力匹配 BruteForceMatcher< L2<float> > matcher; //FlannBasedMatcher matcher; vector< DMatch > matches; matcher.match( descriptors_1, descriptors_2, matches ); cout<<"number of matches: "<<matches.size()<<endl; //-- 显示匹配结果 Mat matchImg; drawMatches( src_1, keypoints_1, src_2, keypoints_2, matches, matchImg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("matching result", matchImg ); imwrite("match_result.png", matchImg); waitKey(0); return 0; }
OpenCV中feature2D学习——FAST特征点检测与SIFT/SURF/BRIEF特征提取与匹配
原文地址:http://blog.csdn.net/holybin/article/details/44778747